A1119. Pre- and Post-order Traversals
Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences, or preorder and inorder traversal sequences. However, if only the postorder and preorder traversal sequences are given, the corresponding tree may no longer be unique.
Now given a pair of postorder and preorder traversal sequences, you are supposed to output the corresponding inorder traversal sequence of the tree. If the tree is not unique, simply output any one of them.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=30), the total number of nodes in the binary tree. The second line gives the preorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first printf in a line "Yes" if the tree is unique, or "No" if not. Then print in the next line the inorder traversal sequence of the corresponding binary tree. If the solution is not unique, any answer would do. It is guaranteed that at least one solution exists. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input 1:
7
1 2 3 4 6 7 5
2 6 7 4 5 3 1
Sample Output 1:
Yes
2 1 6 4 7 3 5
Sample Input 2:
4
1 2 3 4
2 4 3 1
Sample Output 2:
No
2 1 3 4
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int pre[], post[], N;
typedef struct NODE{
struct NODE* lchild, *rchild;
int data;
}node;
int exam(int preL, int preR, int postL, int postR){
if(preL > preR && postL > postR)
return ;
if(pre[preL] != post[postR])
return ;
int len = preR - preL;
int ans = ;
for(int i = ; i <= len; i++){
ans += exam(preL + , preL + i, postL, postL - + i) * exam(preL + i + , preR, postL + i, postR - );
}
return ans;
}
int create(int preL, int preR, int postL, int postR, node* &root){
if(preL > preR && postL > postR){
root = NULL;
return ;
}
if(pre[preL] == post[postR]){
root = new node;
root->data = pre[preL];
root->lchild = NULL;
root->rchild = NULL;
}else{
return ;
}
int ans = ;
int len = preR - preL;
for(int i = ; i <= len; i++){
ans = create(preL + , preL + i, postL, postL - + i, root->lchild) && create(preL + i + , preR, postL + i, postR - , root->rchild);
if(ans != )
return ;
}
return ans;
}
vector<int> visit;
void preOrder(node* root){
if(root == NULL)
return;
preOrder(root->lchild);
visit.push_back(root->data);
preOrder(root->rchild);
} int main(){
scanf("%d", &N);
for(int i = ; i <= N; i++){
scanf("%d", &pre[i]);
}
for(int i = ; i <= N; i++){
scanf("%d", &post[i]);
}
int ans = exam(, N, , N);
node* root = NULL;
create(, N, , N, root);
preOrder(root);
if(ans == )
printf("Yes\n");
else printf("No\n");
for(int i = ; i < visit.size(); i++){
if(i == visit.size() - )
printf("%d\n", visit[i]);
else printf("%d ", visit[i]);
}
return ;
}
总结:
1、检验的方法:使用前序、中序递归建立二叉树的方法差不多。传入前序区间和后序区间之后,由前序和后序都可以确定树根。该序列的根合法的情况有:传入区间为空(即空树); 前序确定的根和后序确定的根相同。 不合法的情况:前序与后序确定的树根不同。 然后将该序列划分为左右子树递归判断。有多种划分方法,需要循环。比如序列长为3,则可划分左右子树为(左0, 右3) (左1, 右2) (左2,右1) (左3,右0)
2、需要注意的是,只有当该树的树根合法、左子树与右子树的划分合法,才能构成合法二叉树。划分种类数:左子树个数乘右子树个数。
3、递归建树则对上面的函数稍加改造即可, 核心方法就是找到根的序号并建立新节点存储根。
A1119. Pre- and Post-order Traversals的更多相关文章
- Construct a tree from Inorder and Level order traversals
Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is a ...
- [LeetCode] Rank Scores 分数排行
Write a SQL query to rank scores. If there is a tie between two scores, both should have the same ra ...
- HDU 4358 Boring counting(莫队+DFS序+离散化)
Boring counting Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 98304/98304 K (Java/Others) ...
- ASP.NET MVC : Action过滤器(Filtering)
http://www.cnblogs.com/QLeelulu/archive/2008/03/21/1117092.html ASP.NET MVC : Action过滤器(Filtering) 相 ...
- HDU 1160 FatMouse's Speed
半个下午,总算A过去了 毕竟水题 好歹是自己独立思考,debug,然后2A过的 我为人人的dp算法 题意: 为了支持你的观点,你需要从给的数据中找出尽量多的数据,说明老鼠越重速度越慢这一论点 本着“指 ...
- UVA 1175 Ladies' Choice 稳定婚姻问题
题目链接: 题目 Ladies' Choice Time Limit: 6000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 问题 ...
- Spring Cloud Zuul 限流详解(附源码)(转)
在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法. ...
- [LeetCode] 系统刷题4_Binary Tree & Divide and Conquer
参考[LeetCode] questions conlusion_InOrder, PreOrder, PostOrder traversal 可以对binary tree进行遍历. 此处说明Divi ...
- LeetCode: Recover Binary Search Tree 解题报告
Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...
- [LeetCode] questions conlusion_InOrder, PreOrder, PostOrder traversal
Pre: node 先, Inorder: node in, Postorder: node 最后 PreOrder Inorde ...
随机推荐
- day 7-11 初识MySQL数据库及安装密码设置破解
一. 什么是数据库 之前所学,数据要永久保存,比如用户注册的用户信息,都是保存于文件中,而文件只能存在于某一台机器上. 如果我们不考虑从文件中读取数据的效率问题,并且假设我们的程序所有的组件都运行在一 ...
- class面向对象-1
一.基本定义 class cl(object): def __init(self,var) self.var=var def func(self,i) print('%s is in %s'%(i,s ...
- com.alibaba的fastjson简介
fastjson简介 Fastjson是一个Java语言编写的高性能功能完善的JSON库.它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSO ...
- @Autowired 与@Resource的区别(详细)
参考:@Autowired 与@Resource的区别(详细) spring不但支持自己定义的@Autowired注解,还支持几个由JSR-250规范定义的注解,它们分别是@Resource.@Pos ...
- python设计模式第十七天【解释器模式】
1.应用场景 (1)解释预先定义的文法 2.代码实现 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from abc import ABCMeta, abs ...
- SSM+shiro,所有配置文件,详细注释版,自用
spring配置文件applicationContext.xml,放在resources下 <?xml version="1.0" encoding="UTF-8& ...
- Java8 flatMap的sample
外国人写得, 很不错 http://www.java67.com/2016/03/how-to-use-flatmap-in-java-8-stream.html package test; impo ...
- fiddler 学习笔记1-下载安装、开启、关闭抓包功能
1 下载安装(安装于C盘之外的空间中) https://www.telerik.com/fiddler 2 开启抓包功能:安装后默认为开启状态 点击 file-capture 或左下角capture ...
- 今天开始学习模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络。
话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧, ...
- How to reset macOS Icon Cache
find . -name cuthead.txt find /private/var/folders/ -name 'com.apple.dock.iconcache' -delete find /p ...