Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences, or preorder and inorder traversal sequences. However, if only the postorder and preorder traversal sequences are given, the corresponding tree may no longer be unique.

Now given a pair of postorder and preorder traversal sequences, you are supposed to output the corresponding inorder traversal sequence of the tree. If the tree is not unique, simply output any one of them.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<=30), the total number of nodes in the binary tree. The second line gives the preorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first printf in a line "Yes" if the tree is unique, or "No" if not. Then print in the next line the inorder traversal sequence of the corresponding binary tree. If the solution is not unique, any answer would do. It is guaranteed that at least one solution exists. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input 1:

7
1 2 3 4 6 7 5
2 6 7 4 5 3 1

Sample Output 1:

Yes
2 1 6 4 7 3 5

Sample Input 2:

4
1 2 3 4
2 4 3 1

Sample Output 2:

No
2 1 3 4
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int pre[], post[], N;
typedef struct NODE{
struct NODE* lchild, *rchild;
int data;
}node;
int exam(int preL, int preR, int postL, int postR){
if(preL > preR && postL > postR)
return ;
if(pre[preL] != post[postR])
return ;
int len = preR - preL;
int ans = ;
for(int i = ; i <= len; i++){
ans += exam(preL + , preL + i, postL, postL - + i) * exam(preL + i + , preR, postL + i, postR - );
}
return ans;
}
int create(int preL, int preR, int postL, int postR, node* &root){
if(preL > preR && postL > postR){
root = NULL;
return ;
}
if(pre[preL] == post[postR]){
root = new node;
root->data = pre[preL];
root->lchild = NULL;
root->rchild = NULL;
}else{
return ;
}
int ans = ;
int len = preR - preL;
for(int i = ; i <= len; i++){
ans = create(preL + , preL + i, postL, postL - + i, root->lchild) && create(preL + i + , preR, postL + i, postR - , root->rchild);
if(ans != )
return ;
}
return ans;
}
vector<int> visit;
void preOrder(node* root){
if(root == NULL)
return;
preOrder(root->lchild);
visit.push_back(root->data);
preOrder(root->rchild);
} int main(){
scanf("%d", &N);
for(int i = ; i <= N; i++){
scanf("%d", &pre[i]);
}
for(int i = ; i <= N; i++){
scanf("%d", &post[i]);
}
int ans = exam(, N, , N);
node* root = NULL;
create(, N, , N, root);
preOrder(root);
if(ans == )
printf("Yes\n");
else printf("No\n");
for(int i = ; i < visit.size(); i++){
if(i == visit.size() - )
printf("%d\n", visit[i]);
else printf("%d ", visit[i]);
}
return ;
}

总结:

1、检验的方法:使用前序、中序递归建立二叉树的方法差不多。传入前序区间和后序区间之后,由前序和后序都可以确定树根。该序列的根合法的情况有:传入区间为空(即空树); 前序确定的根和后序确定的根相同。 不合法的情况:前序与后序确定的树根不同。   然后将该序列划分为左右子树递归判断。有多种划分方法,需要循环。比如序列长为3,则可划分左右子树为(左0, 右3)  (左1, 右2)  (左2,右1)  (左3,右0)

2、需要注意的是,只有当该树的树根合法、左子树与右子树的划分合法,才能构成合法二叉树。划分种类数:左子树个数乘右子树个数。

3、递归建树则对上面的函数稍加改造即可, 核心方法就是找到根的序号并建立新节点存储根。

A1119. Pre- and Post-order Traversals的更多相关文章

  1. Construct a tree from Inorder and Level order traversals

    Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is a ...

  2. [LeetCode] Rank Scores 分数排行

    Write a SQL query to rank scores. If there is a tie between two scores, both should have the same ra ...

  3. HDU 4358 Boring counting(莫队+DFS序+离散化)

    Boring counting Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Others) ...

  4. ASP.NET MVC : Action过滤器(Filtering)

    http://www.cnblogs.com/QLeelulu/archive/2008/03/21/1117092.html ASP.NET MVC : Action过滤器(Filtering) 相 ...

  5. HDU 1160 FatMouse's Speed

    半个下午,总算A过去了 毕竟水题 好歹是自己独立思考,debug,然后2A过的 我为人人的dp算法 题意: 为了支持你的观点,你需要从给的数据中找出尽量多的数据,说明老鼠越重速度越慢这一论点 本着“指 ...

  6. UVA 1175 Ladies' Choice 稳定婚姻问题

    题目链接: 题目 Ladies' Choice Time Limit: 6000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 问题 ...

  7. Spring Cloud Zuul 限流详解(附源码)(转)

    在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法. ...

  8. [LeetCode] 系统刷题4_Binary Tree & Divide and Conquer

    参考[LeetCode] questions conlusion_InOrder, PreOrder, PostOrder traversal 可以对binary tree进行遍历. 此处说明Divi ...

  9. LeetCode: Recover Binary Search Tree 解题报告

    Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...

  10. [LeetCode] questions conlusion_InOrder, PreOrder, PostOrder traversal

    Pre: node 先,                      Inorder:   node in,           Postorder:   node 最后 PreOrder Inorde ...

随机推荐

  1. python爬虫之git的使用(coding.net的使用)

    1.注册coding.net账号,然后登陆. 2.创建项目 套路和github都一样. 1.1.我们在远程仓库上创建了一个仓库,这样的话,我们需要在本地随便建立一个文件普通文件夹,进去以后,执行git ...

  2. python函数、模块、包

    一.函数 定义函数: def fun_name(para_list): coding def fun_name(para_list): coding return xxx 使用函数,fun_name( ...

  3. python学习笔记(6)--条件分支语句

    if xxxx: coding if xxxx: coding else: coding if xxxx: coding elif xxx: coding …… else: coding 或者一种简洁 ...

  4. k8s授权访问

    #监听本地的8080端口 kubectl  proxy --port=8080 [root@k8s-m ~]# kubectl proxy --port=8080Starting to serve o ...

  5. Centos rpm包安装PHP所需包

    yum -y install php php-devel php-fpm php-xml php-pdo php-ldap php-mysql

  6. python数学第一天【极限存在定理】

    1.基本回忆 2.两边夹定理 推论1. 基本三角函数的极限 2.极限存在定理 单调有界数列必有极限 (1)单调递增有上界数列必有极限 (2)单调递减有下界数列必有极限 推论1: (1+1/n)^n有极 ...

  7. python 第三方包安装

    1.tqdm 安装  pip install tqdm 使用时可能会报缺少stopwords.punkt错,原因是缺失相应文件,下载即可: import nltk nltk.download('sto ...

  8. Nintex Workflow Get Attachment link

    不多解释,直接上图,操作简单

  9. Web API2 使用默认Identity

    当您选择个人账户在Web API项目模板,项目包含一个令牌授权服务器验证用户凭证和问题.下面的图显示了相同的凭证流的Web API组件. 发送一个未经授权的请求 首先,运行应用程序并单击按钮调用的AP ...

  10. 微信小程序——部署云函数【三】

    部署login云函数 不部署的话,点击获取openid会报错,报错如下 解决方案呢,很明显的已经告诉我们了 搭建云环境 开通 同意协议 新建环境 每个小程序账号可以创建两个免费环境 确定 部署后再次请 ...