A1119. Pre- and Post-order Traversals
Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences, or preorder and inorder traversal sequences. However, if only the postorder and preorder traversal sequences are given, the corresponding tree may no longer be unique.
Now given a pair of postorder and preorder traversal sequences, you are supposed to output the corresponding inorder traversal sequence of the tree. If the tree is not unique, simply output any one of them.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=30), the total number of nodes in the binary tree. The second line gives the preorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first printf in a line "Yes" if the tree is unique, or "No" if not. Then print in the next line the inorder traversal sequence of the corresponding binary tree. If the solution is not unique, any answer would do. It is guaranteed that at least one solution exists. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input 1:
7
1 2 3 4 6 7 5
2 6 7 4 5 3 1
Sample Output 1:
Yes
2 1 6 4 7 3 5
Sample Input 2:
4
1 2 3 4
2 4 3 1
Sample Output 2:
No
2 1 3 4
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int pre[], post[], N;
typedef struct NODE{
struct NODE* lchild, *rchild;
int data;
}node;
int exam(int preL, int preR, int postL, int postR){
if(preL > preR && postL > postR)
return ;
if(pre[preL] != post[postR])
return ;
int len = preR - preL;
int ans = ;
for(int i = ; i <= len; i++){
ans += exam(preL + , preL + i, postL, postL - + i) * exam(preL + i + , preR, postL + i, postR - );
}
return ans;
}
int create(int preL, int preR, int postL, int postR, node* &root){
if(preL > preR && postL > postR){
root = NULL;
return ;
}
if(pre[preL] == post[postR]){
root = new node;
root->data = pre[preL];
root->lchild = NULL;
root->rchild = NULL;
}else{
return ;
}
int ans = ;
int len = preR - preL;
for(int i = ; i <= len; i++){
ans = create(preL + , preL + i, postL, postL - + i, root->lchild) && create(preL + i + , preR, postL + i, postR - , root->rchild);
if(ans != )
return ;
}
return ans;
}
vector<int> visit;
void preOrder(node* root){
if(root == NULL)
return;
preOrder(root->lchild);
visit.push_back(root->data);
preOrder(root->rchild);
} int main(){
scanf("%d", &N);
for(int i = ; i <= N; i++){
scanf("%d", &pre[i]);
}
for(int i = ; i <= N; i++){
scanf("%d", &post[i]);
}
int ans = exam(, N, , N);
node* root = NULL;
create(, N, , N, root);
preOrder(root);
if(ans == )
printf("Yes\n");
else printf("No\n");
for(int i = ; i < visit.size(); i++){
if(i == visit.size() - )
printf("%d\n", visit[i]);
else printf("%d ", visit[i]);
}
return ;
}
总结:
1、检验的方法:使用前序、中序递归建立二叉树的方法差不多。传入前序区间和后序区间之后,由前序和后序都可以确定树根。该序列的根合法的情况有:传入区间为空(即空树); 前序确定的根和后序确定的根相同。 不合法的情况:前序与后序确定的树根不同。 然后将该序列划分为左右子树递归判断。有多种划分方法,需要循环。比如序列长为3,则可划分左右子树为(左0, 右3) (左1, 右2) (左2,右1) (左3,右0)
2、需要注意的是,只有当该树的树根合法、左子树与右子树的划分合法,才能构成合法二叉树。划分种类数:左子树个数乘右子树个数。
3、递归建树则对上面的函数稍加改造即可, 核心方法就是找到根的序号并建立新节点存储根。
A1119. Pre- and Post-order Traversals的更多相关文章
- Construct a tree from Inorder and Level order traversals
Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is a ...
- [LeetCode] Rank Scores 分数排行
Write a SQL query to rank scores. If there is a tie between two scores, both should have the same ra ...
- HDU 4358 Boring counting(莫队+DFS序+离散化)
Boring counting Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 98304/98304 K (Java/Others) ...
- ASP.NET MVC : Action过滤器(Filtering)
http://www.cnblogs.com/QLeelulu/archive/2008/03/21/1117092.html ASP.NET MVC : Action过滤器(Filtering) 相 ...
- HDU 1160 FatMouse's Speed
半个下午,总算A过去了 毕竟水题 好歹是自己独立思考,debug,然后2A过的 我为人人的dp算法 题意: 为了支持你的观点,你需要从给的数据中找出尽量多的数据,说明老鼠越重速度越慢这一论点 本着“指 ...
- UVA 1175 Ladies' Choice 稳定婚姻问题
题目链接: 题目 Ladies' Choice Time Limit: 6000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 问题 ...
- Spring Cloud Zuul 限流详解(附源码)(转)
在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法. ...
- [LeetCode] 系统刷题4_Binary Tree & Divide and Conquer
参考[LeetCode] questions conlusion_InOrder, PreOrder, PostOrder traversal 可以对binary tree进行遍历. 此处说明Divi ...
- LeetCode: Recover Binary Search Tree 解题报告
Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...
- [LeetCode] questions conlusion_InOrder, PreOrder, PostOrder traversal
Pre: node 先, Inorder: node in, Postorder: node 最后 PreOrder Inorde ...
随机推荐
- Docker部署运行springboot项目,并使用Dockerfile制作镜像
前言: 本来是要搭建一个自动化部署分布式项目的服务器平台的,使用jenkins+k8s+ELK+springboot把一个简单的springboot项目给搞起来,由于工程太大,先分开把每个技术组件单独 ...
- 安装MongoDB(做成Windows服务)并加载C#驱动程序
一 Mongodb简介: 通过查询网上的一些信息来介绍一下Mongodb的优势:MongoDB是一个面向文档的数据库,目前由10gen开发并维护,它的功能丰富,齐全,完全可以替代MySQL.在使用Mo ...
- C#中as运算符
as运算符用于执行引用类型的显式类型转换.如果要转换的类型与指定的类型兼容,转换就会成功进行:如果类型不兼容,as运算符就会返回null值.如下面的代码所示,如果object引用实际上不引用strin ...
- mysql 允许特定IP访问
1. 测试是否允许远程连接 $ telnet 192.168.1.8 3306 host 192.168.1.4 is not allowed to connect to this mysql s ...
- delphi 中出现dataset not in edit or insert mode的问题
self.ADOQuery2.Edit;self.ADOQuery2.First;while not self.ADOQuery2.Eof dobeginself.ADOQuery2.FieldByN ...
- ASP.NET Web API Basic Identity 中的基本身份验证
缺点 用户凭证在请求中发送. 凭据作为明文发送. 每个请求都会发送凭据. 无法注销,除非结束浏览器会话. 易于跨站点请求伪造(CSRF); 需要反CSRF措施. 优点 互联网标准. 受所有主要浏览器支 ...
- ZIP压缩包加密破解
python多线程破解zip文件,废话不多说直接上代码 # -*- coding: UTF-8 -*- #使用多线程和接受参数的形式去破解指定的zip文件 #python3 zip_file_cack ...
- BZOJ1823[JSOI2010]满汉全席——2-SAT+tarjan缩点
题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过 ...
- 复习 LIS nlogn
参考:https://www.cnblogs.com/wxjor/p/5524447.html 最长下降只要把符号都倒过来就行 在栈中二分找第一个比当前值小的替换就行
- Chrome不安装插件实现页面长截图
1.打开需要截图的页面,按F12进入审查模式 或直接在页面右击鼠标右键-检查,打开如下窗口 2.在控制台中按下 ctrl+shift+p,弹出如下输入框 3.输入screen进行模糊查找,选择“Ca ...