CF1157A-Reachable Numbers题解
题目大意:有一个函数\(f(x)\),效果是将\(x+1\)后,去掉末尾所有的\(0\),例如:
\(f(599)=6\),因为\(599+1=600→60→6\)
\(f(7)=8\),因为\(7+1=8\)
\(f(9)=1\),因为\(9+1=10→1\)
\(f(10099)=101\),因为\(10099+1=10100→1010→101\)
我们可以多次进行函数\(f(x)\)的运算,从而让一个数\(x\)转换为另一个数,例如\(10098\)可以转换为\(102\),因为\(f(f(f(10098)))=f(f(10099))=f(101)=102\)。
你需要做的是给你一个数\(n\),求出\(n\)经过多次函数\(f(x)\)的计算,能转换为几个不同的数(包括自身)?
首先,通过模拟样例,不难得出一个结论:如果\(f(x)\)的结果先前已经得到,那么就代表着所有的答案已经算完。
例如:\(n=1\)时,答案为\(9\),模拟过程如下:
\(f(1)=2\)
\(f(2)=3\)
\(f(3)=4\)
\(f(4)=5\)
\(f(5)=6\)
\(f(6)=7\)
\(f(7)=8\)
\(f(8)=9\)
\(f(9)=1\)
\(f(1)=2\)
\(...\)
不难发现,当我们算到\(f(9)=1\)时,便可以结束计算,因为很显然接着算都是得到之前算过的数,于是我们的代码也就很容易写了。
伪代码:
bool book[];//桶,用于判断某个数是否已经算过
int f(int n)//f函数
{
n++;
while(!(n%10))
n/=10;
return n;
}
int main()
{
for(;!book[n];n=f(n))//核心代码
{
book[n]=true;
ans++;
}
}
但是,以上的代码有一个严重的错误:book数组是要开到n级别的,而\(n \le 10^9\),很显然开这么大会MLE,于是我们的\(STL::map\)就派上用场啦!
用\(STL::map\)来代替桶,这样就可以防止空间爆炸了。
代码如下:
#pragma GCC diagnostic error "-std=c++11"
#include <cstdio>
#include <map>
using namespace std;
template<class T>void r(T &a)//快读
{
T s=0,w=1;a=0;char ch=getc(stdin);
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getc(stdin);}
while(ch>='0'&&ch<='9'){s=s*10+ch-'0';ch=getc(stdin);}
a=w*s;
}
template<class T,class... Y>void r(T& t,Y&... a){r(t);r(a...);}
int f(int n)
{
n++;
while(!(n%10))
n/=10;
return n;
}
map<int,bool>book;
int main()
{
int n,ans=0;
r(n);
for(;!book[n];n=f(n))
{
book[n]=true;
ans++;
}
printf("%d",ans);
return 0;
}
CF1157A-Reachable Numbers题解的更多相关文章
- Codeforces1157A(A题)Reachable Numbers
A. Reachable Numbers Let's denote a function f(x)f(x) in such a way: we add 11 to xx, then, while th ...
- CF55D Beautiful numbers 题解
题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...
- Hdoj 1905.Pseudoprime numbers 题解
Problem Description Fermat's theorem states that for any prime number p and for any integer a > 1 ...
- Hdoj 1058.Humble Numbers 题解
Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The ...
- [LeetCode] Add Two Numbers题解
Add Two Numbers: You are given two non-empty linked lists representing two non-negative integers. Th ...
- poj 1995 Raising Modulo Numbers 题解
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6347 Accepted: ...
- CF1320 Div1 D.Reachable Strings 题解
题目大意 给定一个长为\(n\)的01串\(S\),每次你可以对一个串的三个连续位置做:\(011 \rightarrow 110\),\(110 \rightarrow 011\)的操作. 有\(q ...
- CF1265B Beautiful Numbers 题解
Content 给定一个 \(1\sim n\) 的排列,请求出对于 \(1\leqslant m\leqslant n\),是否存在一个区间满足这个区间是一个 \(1\sim m\) 的排列. 数据 ...
- CF359D:Pair of Numbers——题解
https://vjudge.net/problem/CodeForces-359D http://codeforces.com/problemset/problem/359/D 题目大意: 给一串数 ...
随机推荐
- 什么是mybatis?
[学习笔记] 什么是mybatis: Mybatis本质是一种半自动化的ORM框架,前身是ibatis,除了要pojo和映射关系之外,还需要些sql语句. 怎么看待ORM框架: 处理矛盾的,java程 ...
- K3实现按虚拟件/组件发料
最近公司调度部反应了一个K3使用过程中遇到的巨大问题:公司成品BOM组成物料种类破千,绝大部分还不能拆分成组件.为了方便区分,从逻辑上把一堆堆的半成品分成了一个个虚拟件.K3生成的投料单 ...
- 随笔:关于去年的WordPress建站的回忆
2018-02-26 建站 2018-02-28 选择主题Clearision 2018-03-01 学习插入视频.修改主题 <iframe src="//playe ...
- C#-反射reflection
目录 简介 引入 1.新建类库 2. 类库的使用 3.反射 反射实例1 反射实例2 反射实例3 C# shanzm 简介 反射(reflection)是什么? 在<精通C#>中是这么说的& ...
- C语言面试基础知识整理
一.预处理 1.什么是预编译?何时需要预编译? (1)预编译又称预处理,是做些代码文本的替换工作,即程序执行前的一些预处理工作.主要处理#开头的指令,如拷贝#include包含的文件代码.替换#def ...
- C语言实现将日期、时间保存到文本文件中
今天突然兴起,看来一下C语言的文件操作,以前在学习的时候,总是一带而过,觉得没有什么用处:但是现在看来,还真的没有什么用处,最后,我现在还有用到,当然这只是我的个人认为,并不能说明什么,在此我将自己写 ...
- linux 系统shell运行程序不退出
如果通过ssh远程连接到linux系统终端,在shell下执行程序.假如程序名称为app,且程序本身会一直执行不退出,程序执行需要参数文件paramfile. 当我们用 ./app paramfile ...
- html&css学习笔记----YJZJZQA
HTML表单: (
- Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)
Problem Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...
- 看AppCan移动管理平台如何助力企业移动化
AppCan企业移动管理平台(EMM)是为企业移动化战略提供综合管理的平台产品.AppCan EM移动管理平台为企业提供对用户.应用.设备.内容.邮件的综合管理服务,并在此基础上为企业提供统一应用商店 ...