题目大意:

有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数。两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件。谁没有石子可移时输掉游戏。问先手是否必胜。

要保证序列不下降,这个条件似乎有点困难,于是我们转化一下,令数列\(c\)为原序列的差分序列,这样每次操作就等价于把\(c\)中的\(c[i],c[i+1]\)变成\(c[i]-x,c[i]+x(x>0)\)了。然后你需要知道一个叫阶梯Nim游戏的东西。

阶梯Nim游戏大概就是有\(1\)到\(n\)这\(n\)个高度递增的台阶,每个台阶上有一些石子,\(0\)为地面,每次操作可以把一些石子从\(i(i\geqslant1)\)移动到\(i-1\)阶上,不能操作者输(此时所有石子都跑到地面上去了)。

怎么判断先手是否必胜呢?有如下结论:阶梯Nim游戏等价于所有奇数台阶上石子的Nim游戏。

可以这样理解:因为我们先手,那就按照Nim游戏的必胜策略在奇数台阶上先操作,然后轮到对手操作了,有下面这两种情况:

1.他移动偶数台阶上的石子,我们就把他放在奇数台阶上的那一部分石子往下移,这样所有的奇数台阶都没有变

2.他移动奇数台阶上的石子,我们就继续在奇数台阶上按照必胜策略操作

经过上面的操作后,剩下的石子一定都在偶数台阶上。假设此时轮到对手操作(我们操作同理),无论他怎么操作,我们都可以把他操作的那一部分石子向下继续移。最后一步(此时能移动的石子都在\(1\)号台阶上)一定是我们操作,必胜。也就是说最后剩下的那些在偶数台阶上的石子可以忽略不计。

综上所述,阶梯Nim游戏就等价于在奇数台阶上操作的Nim游戏。

看原题,不就是一个倒过来的阶梯Nim游戏吗?倒着扫一遍就好了!

代码:

#include <bits/stdc++.h>

using namespace std;

#define N 1000

int T, n, a[N+5], c[N+5];

int main() {
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", &a[i]), c[i] = a[i]-a[i-1];
int ans = 0;
for(int i = n; i >= 1; i -= 2) ans ^= c[i];
if(ans) printf("TAK\n");
else printf("NIE\n");
}
return 0;
}

洛谷P3480 KAM-Pebbles的更多相关文章

  1. 洛谷 P3480 [POI2009]KAM-Pebbles

    https://www.luogu.org/problemnew/solution/P3480 讲不清楚... 首先对原序列做差分:设原序列为a,差分序列为d 那么,每一次按题意在原序列位置i处取走石 ...

  2. 洛谷 [P3480] KAM-Pebbles

    博弈论转化 本题的限制条件很多,我们尝试转化, 我们发现,定义 c[i] 为第 i 堆可以取得数量,如果第 i 堆取出了 x ,那么 c[i] - x , c[i + 1] + x 我们发现这是一个反 ...

  3. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  4. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  5. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  6. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  7. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  8. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  9. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

随机推荐

  1. 程序员50题(JS版本)(九)

    程序41:八进制转换为十进制 var num1=425; var num2=0; num1=num1.toString(); for(var i=num1.length-1,root=1;i>= ...

  2. .net core identity集成微信授权登录

    最快的方式是直接nuget安装AspNetCore.Authentication.WeChat包. 想要知道是如何实现的,可以看下面github上面的源码. 源码在这里:https://github. ...

  3. Snapde电子表格编写Exprtk脚本进行数据运算

    Snapde,一个专门为编辑超大型数据量CSV文件而设计的单机版电子表格软件:它运行的速度非常快,反应非常灵敏. 一.打开文件:用Snapde打开需要运算的CSV文件 二.添加行列:在编辑菜单找到设置 ...

  4. 一个GIS开源工具集架构的总结

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 最近由团队HWG主导的GIS开源工具集基本告一段落,该项目虽然 ...

  5. PM意识升级2.0

    上一篇<质量:“PM,你怎么可以放弃我?!”>,我们匡正了PM的一个意识:质量是PM的底线和目标,也算是PM意识升级的1.0.同时提出,只有“正确的做正确的事”才是保证质量,且成本相对最低 ...

  6. 【原】使用IDEA创建Maven工程时提示"...xxx/pom.xml already exists in VFS"的解决

    问题:使用IDEA创建Maven工程时提示"...xxx/pom.xml already exists in VFS",怎么办? 解决:如果只是删除工程,还会有这样的提示.说到底, ...

  7. IOS以无线方式安装企业内部应用(开发者)

    请先阅读:http://help.apple.com/deployment/ios/#/apda0e3426d7 操作系统:osx yosemite 10.10.5 (14F1509) xcode:V ...

  8. EM算法(Expectation Maximization)

    1 极大似然估计     假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分 ...

  9. vue nextTick使用

    Vue nextTick使用 vue生命周期 原因是在created()钩子函数执行的时候DOM 其实并未进行任何渲染,而此时进行DOM操作无异于徒劳,所以此处一定要将DOM操作的js代码放进Vue. ...

  10. html简单的知识

    分布式版本控制git       pwd查询当前目录 ls ls -la   git config --global user.name xxx   git config --global user. ...