「雅礼集训 2017 Day5」珠宝
题目描述
Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右买不到。展览中总共有 N 种珠宝,每种珠宝都只有一个,对于第 i种珠宝,它的售价为 Ci 万元,对 Miranda 的吸引力为 Vi。Miranda 总共可以从银行中取出 K 万元,现在她想知道,假如她最终带了 i 万元去展览会,她能买到的珠宝对她的吸引力最大可以是多少?
题解
菜死了菜死了。。
因为普通的01背包问题是NP的,所以我们要观察题目中的一些特殊性质。
注意到C非常小,可以把C拿出来做文章。
对于每一个物品体积,我们可以有方程:dp[i]+sum[j-i]->dp[j]
对于C一样的物品,我们要选肯定是要先选价值大的,所以sum数组是一个上凸的。
我们可以对于每个C,再去枚举余数,在相同余数下进行dp。
因为有了上面的结论,那么我们的dp就有了单调性,若i转移到了x,那么(l-x)只会被(L-i)转移,(x-r)只会被(i-R)转移。
可以用分治dp做。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#define M 302
#define K 50002
#define N 1000002
using namespace std;
typedef long long ll;
ll dp[][K],g[][K];
int pre,now,pos,n,k,mx;
vector<ll>vec[M];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll cmp(ll x,ll y){return x>y;}
void solve(int l,int r,int L,int R,int sum){
if(L>R||l>r)return;
int mid=(L+R)>>;ll num=,point=-;
for(int i=max(mid-sum,l);i<=r&&i<mid;++i){
if(g[pre][i]+vec[pos][mid-i-]>num){
num=g[pre][i]+vec[pos][mid-i-];point=i;
}
}
if(point<)point=l;
g[now][mid]=num;
solve(l,point,L,mid-,sum);solve(point,r,mid+,R,sum);
}
int main(){
n=rd();k=rd();int x,y;
for(int i=;i<=n;++i){
x=rd();y=rd();
vec[x].push_back(y);mx=max(mx,x);
}
now=;pre=;
for(int i=;i<=mx;++i)if(vec[i].size()){
pos=i;swap(now,pre);
sort(vec[i].begin(),vec[i].end(),cmp);int x=vec[i].size();
for(int j=;j<x;++j)vec[i][j]+=vec[i][j-];
for(int j=;j<i;++j){
int p=;
for(int l=j;l<=k;l+=i,p++)g[pre][p]=dp[pre][l],g[now][p]=;p--;
solve(,p,,p,vec[i].size());
for(int l=j,p=;l<=k;l+=i,p++)dp[now][l]=max(dp[now^][l],g[now][p]);
}
}
for(int i=;i<=k;++i)printf("%lld ",dp[now][i]);
return ;
}
「雅礼集训 2017 Day5」珠宝的更多相关文章
- @loj - 6039@ 「雅礼集训 2017 Day5」珠宝
目录 @description@ @solution@ @accpeted code@ @details@ @description@ Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠 ...
- loj #6039 「雅礼集训 2017 Day5」珠宝 分组背包 决策单调性优化
LINK:珠宝 去年在某个oj上写过这道题 当时懵懂无知wa的不省人事 终于发现这个东西原来是有决策单调性的. 可以发现是一个01背包 但是过不了 冷静分析 01背包的复杂度有下界 如果过不了说明必然 ...
- [LOJ#6039].「雅礼集训 2017 Day5」珠宝[决策单调性]
题意 题目链接 分析 注意到本题的 \(C\) 很小,考虑定义一个和 \(C\) 有关的状态. 记 \(f(x,j)\) 表示考虑到了价格为 \(x\) 的物品,一共花费了 \(j\) 元的最大收益. ...
- [loj6039]「雅礼集训 2017 Day5」珠宝 dp+决策单调性+分治
https://loj.ac/problem/6039 我们设dp[i][j]表示考虑所有价值小于等于i的物品,带了j块钱的最大吸引力. 对于ci相同的物品,我们一定是从大到小选k个物品,又发现最大的 ...
- LOJ6039. 「雅礼集训 2017 Day5」珠宝【决策单调性优化DP】【分治】【思维好题】
LINK 懒得搬题面 简要题意:n个物品,每个物品有一个价格和一个吸引力,问你对于\(i \in [1,k]\),花费i的价格能得到的最大吸引力 其中价格的范围很小,在\([1,300]\)范围内 思 ...
- 「雅礼集训 2017 Day5」矩阵
填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表 ...
- LOJ#6038. 「雅礼集训 2017 Day5」远行(LCT)
题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之 ...
- 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT
题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...
- 【刷题】LOJ 6038 「雅礼集训 2017 Day5」远行
题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多 ...
随机推荐
- 学JAVA第十二天,今天写java控制台输入流及String的类型转换
今天老师讲了一天狗跳楼的问题,昨天解开始说了,今天都没讲新课, 所以,今天自学了Scanner类及String的类型转换 先来Scanner类实现键盘输入功能: 代码: package pkg1; i ...
- HTTP概念解析
HTTP--Hyper Text Transfer Protocol HTTP详细介绍(火星的小白 51CTO): https://blog.51cto.com/13570193/2108347 先进 ...
- java基础(一):谈谈java内存管理与垃圾回收机制
看了很多java内存管理的文章或者博客,写的要么笼统,要么划分的不正确,且很多文章都千篇一律.例如部分地方将jvm笼统的分为堆.栈.程序计数器,这么分太过于笼统,无法清晰的阐述java的内存管理模型: ...
- 通过maven profile 打包指定环境配置
背景 最近换了个新公司接手了一个老项目,然后比较坑的是这个公司的项目都没有没有做多环境打包配置,每次发布一个环境都要手动的去修改配置文件.今天正好有空就来配置下. 解决这个问题的方式有很多,我这里挑选 ...
- WebSocket-java实践
websocket 主要用于 前端页面hmtl/jsp 与 后端进行socket得连接. 本例简单实现:一但后端接收到数据或者根据某些规则主动发送数据,那么可以根据不同用户等区别,发送给某个登陆得 ...
- javafx:JavaFX Scene Builder 2.0打开含有第三方jar包的fxml文件报错 Caused by: java.lang.ClassNotFoundException
报错如下: java.io.IOException: javafx.fxml.LoadException: /C:/User.................test.fxml at com.orac ...
- HTML语义化的理解
语义化的主要目的:用正确的标签做正确的事情. 语义化验证方法:css裸奔--去掉css样式,然后看页面是否还具有很好的可读性. 语义化意义 / 优点: 1.让页面的内容结构化 2.利于浏览器解析和SE ...
- SQL Server数据仓库的基础架构规划
问题 SQL Server数据仓库具有自己的特征和行为属性,有别去其他.从这个意义上说,数据仓库基础架构规划需要与标准SQL Server OLTP数据库系统的规划不同.在本文中,我们将介绍在计划数据 ...
- 【vue】使用vue+element搭建项目,Tree树形控件使用
1.依赖安装 本例中,使用render-content进行树节点内容的自定义,因此需要支持JSX语法.(见参考资料第3个) 在Git bash中运行一下指令 cnpm install\ babel-p ...
- C++ 精英化趋势
精英化趋势 C++ 是一门引起无数争议的语言.眼下最常听到的声音则是 C++ 将趋于没落,会被某某语言取代.我很怀疑这种论调的起点是商业宣传,C++ 的真实趋势应该是越来越倾向于精英化. 精英化是指在 ...