空间漫游(SAC大佬的测试)
题目描述
由于球哥和巨佬嘉诚交了很多保护费,我们有钱进行一次 d 维空间漫游。
d 维空间中有 d 个正交坐标轴,可以用这些坐标轴来描述你在空间中的位置和移动的方
向。例如,d = 1 时,空间是一个数轴,方向有左或右;d = 2 时,空间是一个平面,方向为
上下左右之一;d = 3 时,空间是一个三维空间,方向为上下左右前后之一;d≥4 时同理。
形式化地描述,d 维空间中共有 2d 个方向,分别对应平行于 d 个坐标轴的正方向和负
方向。虽然这 2d 个方向可以线性组合出无限个方向,但这不在本题的讨论范围中。可以用
一个 d 维向量来描述一个 d 维空间中的方向,其中一维是 1 或-1,其余维度均为 0。如,d=4
时,几个可能的方向是(0,1,0,0)、(0,0,-1,0)等,而(1,1,0,0)不是一个本题中讨论的方向。
你在开始漫游之前,要为自己制定一条路线。你打算一共走 2N 步,每步选择 2d 个方
向中的一个,并沿着该方向走 1 单位长度的距离。并且,你希望漫游结束后能回到开始时的
起点。
请计算有多少条不同的路线满足上述要求,并输出其 mod 1,000,000,007 的值。两条路
线被认为不同当且仅当存在一步,两条路线在该步选择的方向不同。
输入格式
输入仅一行,两个用空格分开的非负整数 d,N。
输出格式
输出仅一行,仅一个整数表示符合要求的路线条数 mod 1,000,000,007。
样例输入 1
2 0
样例输出 1
1
样例解释 1
长度为 0 的路线只有一条
样例输入 2
2 1
样例输出 2
4
样例解释 2
路线 1:(1,0), (-1,0)
路线 2:(-1,0), (1,0)
路线 3:(0,1), (0,-1)
路线 4:(0,-1), (0,1)
样例输入 3
3 2
样例输出 3
90
%%%SAC巨佬https://home.cnblogs.com/u/NaVi-Awson
5 分算法
对于 N = 0,显然路线只有一条,输出 1 即可,复杂度 O(1)。
20 分算法
结合 5 分算法,对于另外的 d = 1,我们可以用 f[i][j]表示第 i 步走到 j 这个位置的方
案数,f[i][j] = f[i-1][j-1]+f[i-1][j+1],因为会有负值,我们可以将整个数组向右平移,即
可求解。复杂度 O(N^2 )。
60 分算法
结合 20 分算法,并且由它启发,我们开三维的数组 f[i][x][y],第 i 步走到二位位置
坐标(x,y)方案数,由四个方向转移过来,复杂度 O(N^3 )。
100 分算法
我们发现到后面维度 d 适合 n 一个数量级的,显然我们不可以单独地把每一个维度拿
出来单独研究。
我们发现既然要求走到原点,那是不是就是在每个正交轴上的投影均为 0。就等于说我
在某一维度上向“外”走 m 步,就一定要走回来 m 步。
我们试着定义方程 f[i][j]表示在前 i 个维度向外走了 j 步(即总共走了 2*j 步)的方案数。
如何转移?我们正考虑当前的 i 维,我并不关心前 i-1 维是怎样走的,那是不是状态是
由 f[i-1][j-k],0<=k<=j 转移过来的。那么我肯定不能简单的相加。
考虑本质,f[i-1][j-k]表示从前 i-1 维向外走了 j-k 步,那么剩下的 k 步是要在这一维里面走的。
我要把 j-k 和 k 有机融合在一起。
我们想到了组合数。
C(2*k,2*j) 表示我们在这总共走的 2*j 步中选取 2*k 步为当前这一维走的。
那么对于 f[i][j-k],我们还要乘上一个 C (2*k,2*j)
但这还是不够,我们还没考虑这 2*k 步中是怎样走的。因为我们刚才说过了 2*k 步有向
“外”走的也有向“内”走的,那么还有乘一个 C(k,2*k) 。
综上转移方程就是
f[i][j]=sum{f[i-1][j-k]* C(k,2*k)*C(2*j,2*k)}
对于组合数用阶乘逆元
复杂度 O(d*N^2 )
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lol;
int Mod=;
lol A[],B[],f[][];
int d,n;
lol C(int x,int y)
{
if (x==||y==) return ;
lol fz=B[x];
lol fm=(A[y]*A[x-y])%Mod;
return (fz*fm)%Mod;
}
int main()
{int i,j,k;
cin>>d>>n;
A[]=;
A[]=;
for (i=;i<=*n;i++)
A[i]=((Mod-Mod/i)*A[Mod%i])%Mod;
for (i=;i<=*n;i++)
A[i]=(A[i]*A[i-])%Mod;
B[]=;
for (i=;i<=*n;i++)
B[i]=(B[i-]*i)%Mod;
f[][]=;
for (i=;i<=d;i++)
{
for (j=;j<=n;j++)
{
for (k=;k<=j;k++)
{
f[i][j]+=(f[i-][j-k]*C(*j,*k)%Mod)*C(*k,k)%Mod;
f[i][j]%=Mod;
}
}
}
cout<<f[d][n];
}
空间漫游(SAC大佬的测试)的更多相关文章
- Oracle12c:安装后新建用户及其默认表空间,并创建表测试
环境: 操作系统:Windows Server2008 R2 X64 Oracle版本:12c 如何安装? -- oracle 12c在oracle linux 6.6 x64上的安装 -- Wind ...
- 贼有意思[最长上升公共子序列](SAC大佬测试题)
题目描述Awson 最近越来越蠢了,一天就只知道 zyys.他定义了一个 zyys 数列:这个数列满足:1.是另外两个数列 A,B 的公共子序列;2.数列单调递增.现在他有一个问题,我们假设知道两个长 ...
- 手机APP测试的几大点
移动互联网App测试点包括: 1.安全测试: 安全测试包括: a.软件是否存在扣费风险,比如发送短信,拨打电话,连接网络等. b.软件是否存在泄漏用户隐私的风险,比如访问手机信息,访问联系人信息等. ...
- APP测试流程
1 APP测试基本流程 1.1流程图 1.2测试周期 测试周期可按项目的开发周期来确定测试时间,一般测试时间为两三周(即15个工作日),根据项目情况以及版本质量可适当缩短或延长测试时间.正式测试前先向 ...
- Oracle 10g bigfile表空间、smallfile 表空间
smallfile tablespace设置不同大小的db_block_size时数据文件允许的最大大小 db_block_size=2KB,2KB*4M=8192M 8Gdb_block_ ...
- Oracle安装过程物理内存检查及临时temp空间不足解决办法
物理内存 – 此先决条件将测试系统物理内存总量是否至少为 922MB (944128.0KB). 预期值 : N/A 实际值 : N/A 错误列表: – 可用物理内存 PRVF-7531 : 无法在节 ...
- 数据泵 TTS(传输表空间技术)
1.源库准备环境 --创建被传输的表空间create tablespace tts logging datafile '/home/oracle/app/oradata/orcl/tts01.dbf' ...
- jdk源码剖析五:JDK8-废弃永久代(PermGen)迎来元空间(Metaspace)
目录 1.背景 2.为什么废弃永久代(PermGen) 3.深入理解元空间(Metaspace) 4.总结 ========正文分割线===== 一.背景 1.1 永久代(PermGen)在哪里? 根 ...
- 移动应用/APP的测试流程及方法
1. APP测试基本流程 1.1流程图 1.2测试周期 测试周期可按项目的开发周期来确定测试时间,一般测试时间为两三周(即15个工作日),根据项目情况以及版本质量可适当缩短或延长测试时间.正式测试前先 ...
随机推荐
- [福大软工] W班 总成绩排行榜
评分链接 作业1 作业2 作业3 作业4 总分排名
- Welcome to StackEdit!
Welcome to StackEdit! Hey!our first Markdown document in StackEdit1. Don't delete me, I'm very helpf ...
- C语言第二次博客作业---分支结构 陈张鑫
一.PTA实验作业 题目1:计算分段函数[2] 本题目要求计算下列分段函数f(x)的值: 1.实验代码 int main(){double x,y; scanf("%lf",&am ...
- C语言——总结回顾
1.当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么? 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 答:①当初选择计算机专业是出于一种选择,是一种带着冲 ...
- Spring MVC Restful Put方法无法获取参数值
Spring MVC Restful 无法通过@ReqeustParam获取参数值 原因是Tomcat只支持POST/GET获取参数值,对于PUT这些方法需要通过HttpPutFormContentF ...
- 使用PostMan进行API自动化测试
最近在进行一个老项目的升级,第一步是先将node版本从4.x升级到8.x,担心升级会出现问题,所以需要将服务的接口进行验证:如果手动输入各种URL,人肉check,一个两个还行,整个服务..大几十个接 ...
- UWP 页面间传递参数(常见类型string、int以及自定义类型)
这是一篇很基础的,大佬就不要看了,也不要喷,谢谢
- day-6 机器学习概念及应用
学习玩Python基础语法,今天开始进行机器学习,首先了解下机器学习和深度学习的一些基本概念和术语: 1. 机器学习概念及应用 2. 深度学习概念及应用 3. 机器学习基本术语及举例 4. 机 ...
- nyoj 非洲小孩
非洲小孩 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 家住非洲的小孩,都很黑.为什么呢?第一,他们地处热带,太阳辐射严重.第二,他们不经常洗澡.(常年缺水,怎么洗 ...
- python识别验证码——PIL,pytesser,pytesseract的安装
1.使用Python识别验证码需要安装Python的图像处理模块(PIL.pytesser.pytesseract) (安装过程需要pip,在我的Python中已经安装pip了,pip的安装就不在赘述 ...