bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp
2442: [Usaco2011 Open]修剪草坪
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1159 Solved: 593
[Submit][Status][Discuss]
Description
在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。
然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。
靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。
Input
* 第一行:空格隔开的两个整数N和K
* 第二到N+1行:第i+1行有一个整数E_i
Output
* 第一行:一个值,表示FJ可以得到的最大的效率值。
Sample Input
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
Sample Output
FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。
正难则反
考虑在每k个中有一个不选
设f[i]为到i位置合法且i不选,不选的牛价值之和的最小值
ans=sum-f[i](n-m<=i<=n)
转移f[i]=a[i]+min(f[j]) (i-j<=m+1)
可以发现后面那个东西可以用单调队列维护
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 100005
#define ll long long
using namespace std;
int n,m,a[N],q[N];ll sum,f[N];
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]),sum+=a[i];
int h=,t=;
for(int i=;i<=n;i++){
while(h<=t&&i-q[h]>+m)h++;
f[i]=a[i]+f[q[h]];
while(h<=t&&f[q[t]]>=f[i])t--;
q[++t]=i;
}
ll ans=f[n];
for(int i=n-m;i<n;i++)ans=min(ans,f[i]);
cout<<sum-ans;return ;
}
bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp的更多相关文章
- bzoj2442[Usaco2011 Open]修剪草坪——单调队列优化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 考虑记录前 i 个.末尾 j 个连续选上的最大值.发现时空会爆. 又发现大量的转移形如 ...
- 修剪草坪 单调队列优化dp BZOJ2442
题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Farm John的草坪非 ...
- P2627 修剪草坪 (单调队列优化$dp$)
题目链接 Solution 70分很简单的DP,复杂度 O(NK). 方程如下: \[f[i][1]=max(f[j][0]+sum[i]-sum[j])\]\[f[i][0]=max(f[i-1][ ...
- BZOJ 2442: [Usaco2011 Open]修剪草坪 单调队列
Code: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...
- 动态规划专题(四)——单调队列优化DP
前言 单调队列优化\(DP\)应该还算是比较简单容易理解的吧,像它的升级版斜率优化\(DP\)就显得复杂了许多. 基本式子 单调队列优化\(DP\)的一般式子其实也非常简单: \[f_i=max_{j ...
- 「学习笔记」单调队列优化dp
目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
随机推荐
- 火车头采集器对接织梦cms图集发布时, 采集网上图片超时的解决方法
背景介绍: 火车头采集器对接织梦cms图片集发布时, 对于多张(超过30张)大图片时, 经常会出现图集发布超时的情况. 问题分析: 因为php对于资源的处理有默认的超时时间30秒, 而我尝试了好多方 ...
- JAVA_SE基础——35.static修饰成员函数
在Java中适用static关键字修饰的方法称为静态方法. 声明静态方法的语法格式如下: 权限修饰符 static 数据类型 方法名(){ 方法体 } 静态方法 可以使用类名直接调用 类名.方 ...
- C#之Socket通信
0.虽然之前在项目中也有用过Socket,但始终不是自己搭建的,所以对Server,Clinet端以及心跳,断线重连总没有很深入的理解,现在自己搭建了一遍加深一下理解. 服务端使用WPF界面,客户端使 ...
- pymysql安装和使用
一.pymysql安装 安装mymysql前请确认python环境已经准备好,在之前的博文http://www.cnblogs.com/newzol/p/8682176.html有说明pythonwe ...
- Linux上 ps 命令的用法
ps a 显示现行终端机下的所有程序,包括其他用户的程序.2)ps -A 显示所有程序. 3)ps c 列出程序时,显示每个程序真正的指令名称,而不包含路径,参数或常驻服务的标示. 4)ps -e 此 ...
- Spring Security入门(3-2)Spring Security对接用户的权限系统
源文链接,多谢作者的分享: http://www.360doc.com/content/14/0727/16/18637323_397445724.shtml 1.原生的spring-security ...
- BBS的登陆——发帖——回帖
整体分析思路 1.首先手工熟悉一遍业务流程 2.录制脚本,选取协议,设置录制选项 1)Run-Time-Settings——Preferences——Options设置3个超时 2)Recording ...
- 用UIWebView加载本地图片和gif图
加载gif图: NSData *gif = [NSData dataWithContentsOfFile: [[NSBundle mainBundle] pathForResource:@" ...
- Python系列之 - 反射
一.静态方法(staticmethod)和类方法(classmethod) 类方法:有个默认参数cls,并且可以直接用类名去调用,可以与类属性交互(也就是可以使用类属性) 静态方法:让类里的方法直接被 ...
- fromkeys() keys() values() items()
fromkeys() >>> dict1={} >>> dict1.fromkeys((1,2,3))#会自动为没有赋值的值建立none {1: None, 2: ...