来自FallDream的博客,未经允许,请勿转载,谢谢。


周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利。大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了。同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正反面情况。用H表示正面朝上,用T表示反面朝上,扔很多次硬币后,会得到一个硬币序列。比如HTT表示第一次正面朝上,后两次反面朝上。但扔到什么时候停止呢?大家提议,选出n个同学,每个同学猜一个长度为m的序列,当某一个同学猜的序列在硬币序列中出现时,就不再扔硬币了,并且这个同学胜利,为了保证只有一个同学胜利,同学们猜的n个序列两两不同。很快,n个同学猜好序列,然后进入了紧张而又刺激的扔硬币环节。你想知道,如果硬币正反面朝上的概率相同,每个同学胜利的概率是多少。

n,m<=300

只会(nm)^3的做法....正解太神啦。

令N表示什么都没匹配到的状态,然后我计算在后面接上一个串的概率

注意到N是什么其实是不确定的,也就是可能还没全部接上去就接好了

更详细地,假设A=HTT,B=TTH

那么p(N+A)=p(A)+p(B)*2^(-1)+p(B)*2^(-2)

p(N+A)=p(N)*2^(-3)

也就是说,有一个串的后缀是我的前缀的时候,它会影响我的概率。

求这种情况可以用kmp

这样就列出了n个方程,在加上一个概率和等于1的方程,就能得到n+1个变量n+1个方程 高斯消元即可。

复杂度n^3

#include<iostream>
#include<cstdio>
#define MN 300
#define ld long double
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} int n,m,fail[MN+][MN+];
char st[MN+][MN+];
ld a[MN+][MN+],p[MN+],ans[MN+]; void BuildFail(char*s,int*f)
{
for(int i=,j=;i<=m;++i)
{
while(j&&s[j+]!=s[i]) j=f[j];
if(s[j+]==s[i])++j;f[i]=j;
}
} ld Calc(int y,int x)
{
ld ans=;int j=;
for(int i=;i<=m;++i)
{
while(j&&st[y][j+]!=st[x][i]) j=fail[y][j];
if(st[y][j+]==st[x][i]) ++j;
}
for(;j;) ans+=p[m-j],j=fail[y][j];
return ans;
} void Gauss()
{
for(int i=;i<=n+;++i)
{
for(int j=i;j<=n+;++j)
if(a[j][i])
{
if(j!=i)
for(int k=i;k<=n+;++k)
swap(a[j][k],a[i][k]);
break;
}
for(int j=i+;j<=n+;++j)
{
ld delta=a[j][i]/a[i][i];
for(int k=i;k<=n+;++k)
a[j][k]=a[j][k]-a[i][k]*delta;
}
}
for(int i=n+;i;--i)
{
for(int j=i+;j<=n+;++j)
a[i][n+]-=a[i][j]*ans[j];
ans[i]=a[i][n+]/a[i][i];
}
} int main()
{
n=read();m=read();p[]=;
for(int i=;i<=m;++i) p[i]=p[i-]/;
for(int i=;i<=n;++i)
scanf("%s",st[i]+),a[i][n+]=-p[m];
for(int i=;i<=n;++i) a[n+][i]=;a[n+][n+]=;
for(int i=;i<=n;++i) BuildFail(st[i],fail[i]);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
a[i][j]=Calc(i,j);
Gauss();
for(int i=;i<=n;++i) printf("%.10lf\n",(double)ans[i]);
return ;
}

[bzoj4820][Sdoi2017]硬币游戏的更多相关文章

  1. BZOJ4820 Sdoi2017 硬币游戏 【概率期望】【高斯消元】【KMP】*

    BZOJ4820 Sdoi2017 硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实 ...

  2. [BZOJ4820][SDOI2017]硬币游戏(高斯消元+KMP)

    比较神的一道题,正解比较难以理解. 首先不难得出一个(nm)^3的算法,对所有串建AC自动机,将在每个点停止的概率作为未知数做高斯消元即可. 可以证明,AC自动机上所有不是模式串终止节点的点可以看成一 ...

  3. BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)

    容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...

  4. 【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)

    [BZOJ4820][SDOI2017]硬币游戏(高斯消元) 题面 BZOJ 洛谷 题解 第一眼的感觉就是构\(AC\)自动机之后直接高斯消元算概率,这样子似乎就是\(BZOJ1444\)了.然而点数 ...

  5. 【BZOJ4820】[Sdoi2017]硬币游戏 AC自动机+概率DP+高斯消元

    [BZOJ4820][Sdoi2017]硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬 ...

  6. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  7. [Sdoi2017]硬币游戏 [高斯消元 KMP]

    [Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...

  8. 4820: [Sdoi2017]硬币游戏

    4820: [Sdoi2017]硬币游戏 链接 分析: 期望dp+高斯消元. 首先可以建出AC自动机,Xi表示经过节点i的期望次数,然后高斯消元,这样点的个数太多,复杂度太大.但是AC自动机上末尾节点 ...

  9. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

随机推荐

  1. Twisted UDP编程技术

    实战演练1:普通UDP UDP是一种无连接对等通信协议,没有服务器和客户端概念,通信的任何一方均可通过通信原语直接和其他方通信 1.相对于TCP,UDP编程只需定义DatagramProtocol子类 ...

  2. 【iOS】Swift LAZY 修饰符和 LAZY 方法

    延时加载或者说延时初始化是很常用的优化方法,在构建和生成新的对象的时候,内存分配会在运行时耗费不少时间,如果有一些对象的属性和内容非常复杂的话,这个时间更是不可忽略.另外,有些情况下我们并不会立即用到 ...

  3. (转载) Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)

    1 . 查看当天日期 select current_date(); 2. 查看当天时间 select current_time(); 3.查看当天时间日期 select current_timesta ...

  4. Tomcat性能优化及JVM内存工作原理

    Java性能优化原则:代码运算性能.内存回收.应用配置(影响Java程序主要原因是垃圾回收,下面会重点介绍这方面) 代码层优化:避免过多循环嵌套.调用和复杂逻辑. Tomcat调优主要内容如下: 1. ...

  5. hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(1)安装jdk

    一.文件准备 下载jdk-8u131-linux-x64.tar.gz 二.工具准备 2.1 Xshell 2.2 Xftp 三.操作步骤 3.1 解压文件: $ tar zxvf jdk-8u131 ...

  6. Spring Security入门(3-6)Spring Security 的鉴权 - 自定义权限前缀

  7. linux添加硬盘分区挂载教程

    基本步骤:分区--格式化--挂载--写入文件 1.首先用fdisk -l命令查看添加的硬盘名称,可以看到sdb为新增的硬盘 [root@oracle ~]# fdisk -l Disk /dev/sd ...

  8. vue中的vue-cli

    在前面的学习过程中我相信你们已经对vue有了一定的了解,现在我们来看一下vue中的vue-cli. 学习这个我们首先需要的是node环境的,如果你的网络环境慢的话建议安装淘宝镜像,在cmd中输入 np ...

  9. [翻译] Tensorflow模型的保存与恢复

    翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...

  10. Spring之事务管理

        事务管理对于企业应用至关重要.它保证了用户的每一次操作都是可靠的,即便出现了异常的访问情况,也不至于破坏后台数据的完整性.     就像银行的自助取款机,通常都能正常为客户服务,但是也难免遇到 ...