题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4518

题解:

斜率优化DP

首先看看最后答案的形式:

设a[i]为第i天走的距离,那么

$ANS=\frac{\sum_{i=1}^{M}(a[i]-\overline{x})^2}{M}\times{M^2}$

$\;\qquad=\frac{(\sum_{i=1}^{M}a[i]^2)-2\overline{x}SUM+M\overline{x}^2}{M}\times{M^2}$

$\;\qquad=M(\sum_{i=1}^{M}a[i]^2)-SUM^2$

由于M和SUM是固定的,所以问题转化为求$\sum_{i=1}^{M}a[i]^2$的最小值,

即把区间分为M段,使得每一段的和的平方加起来最小。

定义 DP[i][j] 为前i个位置,分为了j段,且i位置为最后一段的结尾的最小值。

转移:

$DP[i][j]\,=\,min(DP[k][j-1]+(SUM[i]-SUM[k])^2)$

然后把式子展开,得到:

$DP[i][j]\,=\,min(DP[k][j-1]+SUM[k]^2-2SUM[i]SUM[k]+SUM[i]^2)$

是一个典型的可以用斜率优化的式子。

(由于DP时是先枚举第二维,一层一层地计算,所以以下的内容中省略掉dp的第二维,同时用g[i]表示上一层的dp[i][~])

令$Y[j]=g[j]+SUM[j]^2$,

若对于当前计算的dp[i],存在两个转移来源点 k,j,k < j,且j优于k

则得到

$Y[j]-2SUM[i]SUM[j]-Y[k]-2SUM[i]SUM[k]<0$

化简:$\frac{Y[j]-Y[k]}{2SUM[j]-2SUM[k]}<SUM[i]$

令Slope(j,k)=$\frac{Y[j]-Y[k]}{2SUM[j]-2SUM[k]}$,

则得到结论:若k < j,且Slope(j,k)<SUM[i],则j优于k。

那么如果存在 k<j<i,且Slope(i,j)<Slope(j,k),则j是无效点,舍去。

同时注意到SUM[i]单增,所以可以用单调队列维护。

最终的复杂度 O(N*M)

代码:

  1. #include<cstdio>
  2. #include<cstring>
  3. #include<iostream>
  4. #define MAXN 3050
  5. using namespace std;
  6. int DP[2][MAXN],SUM[MAXN];
  7. int N,M,*t1=DP[0],*t2=DP[1];
  8. struct Moque{
  9. int q[MAXN],l,r;
  10. void Reset(){l=r=1; q[1]=0; t2[0]=0;}
  11. double Y(int j){
  12. return t2[j]+1.0*SUM[j]*SUM[j];
  13. }
  14. double X(int j){
  15. return 2.0*SUM[j];
  16. }
  17. double Slope(int j,int k){
  18. return (Y(j)-Y(k))/(X(j)-X(k));
  19. }
  20. void Push(int i){
  21. if(l<=r&&SUM[i]==SUM[q[r]])
  22. {if(t2[i]<t2[q[r]]) r--; else return;}
  23. while(l+1<=r&&Slope(i,q[r])<Slope(q[r],q[r-1])) r--;
  24. q[++r]=i;
  25. }
  26. int Query(int i){
  27. while(l+1<=r&&Slope(q[l],q[l+1])<SUM[i]) l++;
  28. return q[l];
  29. }
  30. }Q;
  31. int main(){
  32. scanf("%d%d",&N,&M);
  33. for(int i=1;i<=N;i++)
  34. scanf("%d",&SUM[i]),SUM[i]+=SUM[i-1];
  35. memset(DP,0x3f,sizeof(DP));
  36. t1[0]=0;
  37. for(int j=1;j<=M;j++){
  38. Q.Reset(); swap(t1,t2);
  39. for(int i=1,k;i<=N;i++){
  40. Q.Push(i); k=Q.Query(i);
  41. t1[i]=t2[k]+(SUM[i]-SUM[k])*(SUM[i]-SUM[k]);
  42. }
  43. }
  44. printf("%d",M*t1[N]-SUM[N]*SUM[N]);
  45. return 0;
  46. }

  

●BZOJ 4518 [Sdoi2016]征途的更多相关文章

  1. 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 532  Solved: 337[Submit][Status][ ...

  2. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  3. BZOJ 4518 [Sdoi2016]征途(分治DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4518 [题目大意] 给出一个数列,分成m段,求方差最小,答案乘上m的平方. [题解] ...

  4. bzoj 4518: [Sdoi2016]征途

    Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...

  5. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  6. 4518: [Sdoi2016]征途

    Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...

  7. BZOJ.4072.[SDOI2016]征途(DP 斜率优化)

    题目链接 题目要求使得下面这个式子最小(\(\mu=\frac{\sum_{i=1}^ma_i}{m}\)是平均数,\(a_i\)为第\(i\)段的和): \[\frac{\sum_{i-1}^m(\ ...

  8. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  9. BZOJ_4518_[Sdoi2016]征途_斜率优化

    BZOJ_4518_[Sdoi2016]征途_斜率优化 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到 ...

随机推荐

  1. C++之异常捕获和处理

    一.简介   在C++语言中,异常处理包括:throw表达式,try语句块,一套异常类.其中,异常类用于在throw表达式和相关的catch子句之间传递异常的具体信息.exception头文件定义了最 ...

  2. HTTP协议形象展现

    关于http协议:我们分成几个模块说: http协议: HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统. HTTP协议的主要特点可概括如下: 1.支持客户 ...

  3. 201621123057 《Java程序设计》第8周学习总结

    1. 本周学习总结 思维导图归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 ArrayList是允许重复的,但当用它来 ...

  4. SQL数据库开发中的一些经典代码

    1.按姓氏笔画排序: Select * From TableName Order By CustomerName Collate Chinese_PRC_Stroke_ci_as  2.数据库加密: ...

  5. 201421123042 《Java程序设计》第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...

  6. python脚本,计算起点终点高程

    import arcpy >>> import arcpy ... gd="D:/项目/shp/Pipe.gdb/ZK/GDPOINT" ... gx=" ...

  7. oracle导入命令,记录一下

    工作中用到了,这个命令,记录一下,前提要安装imp.exe imp PECARD_HN/PECARD_HN@127.0.0.1:1521/orcl file=E:\work\dmp\PECARD_HN ...

  8. 20165226 2017-2018-4 《Java程序设计》第6周学习总结

    20165226 2017-2018-4 <Java程序设计>第6周学习总结 教材学习内容总结 第八章 常用实用类 string类 并置 两个常量进行并置,得到的仍是常量. public ...

  9. 老帖收藏,留供参考:SpringMvc2.5+Mybatis3.2.7

    一.项目背景 SpringMvc+Mybatis 数据库连接池是阿里巴巴的druid.日志框架式logback 二.配置文件 1.SpringMvc-servlet.xml <?xml vers ...

  10. 开源软件:NoSql数据库 - 图数据库 Neo4j

    转载自原文地址:http://www.cnblogs.com/loveis715/p/5277051.html 最近我在用图形数据库来完成对一个初创项目的支持.在使用过程中觉得这种图形数据库实际上挺有 ...