今天继续学习一下Numpy库,废话不多说,整起走

先说下Numpy中,经常会犯错的地方,就是数据的复制

这个问题不仅仅是在numpy中有,其他地方也同样会出现

import numpy as np
a = np.arange(12)
b = a
print(b is a)
b.shape = 3,4
print(a.shape)
print(id(a))
print(id(b))

先看看这段代码,我们随便建立了一个numpy数组

然后我想把a这个值,赋值给b,很简单的操作,b = a

那么我们打印一下b和a是不相等,返回的结果为True

也就是说,b和a是相等的

那么我们现在讲b做个shape变换

然后在看看a的shape有没有变换

我们这里多打印些东西,更容易我们理解

我们看到a 的id,和b 的id 是一样的,说明a和b,是完全相等的

我改变其中任意一个,都是改变另外一个值。实际上a和b指向的都是内存中的同一个地址

我们接着看下面的代码

c = a.view()
print(c is a)
c.shape = 2,6
print(a.shape)
c[0,4] = 1234
print(a)
print(id(a))
print(id(c))

我这里 定义了一个c,这个c也是一种复制,浅复制。用view()

我们在看看c 是不是a,返回的结果则是,False,说明,a和c不相等

我们将c.shape变换为2,6

打印一下a.shape发现,a的shape还是3,4

那么我将c中的一个值,修改为1234

可以看到,打印出来的a也改变了

让后通过id发现, 他们两个不是同一个地址。但是我修改的时候会做修改

说明,用view()方法复制出来的数据,相当于python中的浅拷贝。

简单说,就是a和c他们指向的地址不一样,但是他们公用一组数据。

但是这个view不推荐使用

下面我们接着看

d = a.copy()
print(d is a)
d[0,0] = 9999
print(d)
print(a)

这里看到,d = a.copy(),a 不是d ,所以打印出来是False

那么我们让d 中的 一个元素变成9999

那么打印一下a和d 发现,a中没有变化,d中有变化,也就是说

如果我们想让一个变量,的初始值是a,然后在新的上面做一些变化的时候,一定要用copy来做

下面我们在说说argmax

data = np.sin(np.arange(20).reshape(5,4))
print(data)
ind = data.argmax(axis=0)
print(ind)
data_max = data[ind, range(data.shape[1])]
print(data_max)

这段代码可以看出,我们生成了一个5行 4列的矩阵。我们定义维度axis = 0 就是按照列进行选择

打印一下可以看到,第一列中0.98935825这个值是最大的。我们通过打印ind,得到最大的值是矩阵第一列的第3个元素

也就是元素下标为2,那么第二列中,第一个元素最大,下标为0,以此类推,得到[2 0 3 1]

按行找的话,需要设置维度axis = 1,即可

我们想取到,没列中,最大的数是多少,可以使用data_max这种取值方式,将矩阵中按照列排列最大的元素是多少,取出来

a = np.arange(0,40,10)
print(a)
b = np.tile(a,(4,2))
print(b)=

看到上面这段代码,我们生成一个向量

然后,通过tile函数,将我们生成的向量传入进去,让后按照矩阵进行翻倍变换

得到,4行2列的数据,下面继续

a = np.array([[4,3,5],[1,2,1]])
print(a)
b = np.sort(a, axis = 1)
print(b)
a.sort(axis = 1)
print('****************')
print(a)
a = np.array([4,3,1,2])
j = np.argsort(a)
print('***************')
print(j)
print('***************')
print(a[j])

首先我们使用sort,将我们的a进行了以行为主的排序

我们可以看到,使用np.sort和直接.sort的效果是一样的

np.argsort,则是求出a的索引值,然后再按照a的索引值进行排序

今天就先说到这里,感谢各位的阅读,感谢支持!!谢谢!!

Numpy库的学习(五)的更多相关文章

  1. Numpy库的学习(三)

    今天我们继续学习一下Numpy库的学习 废话不多说 ,开始讲 比如我们现在想创建一个0-14这样一个15位的数组 可以直接写,但是很麻烦,Numpy中就给我们了一个方便创建的方法 numpy中有一个a ...

  2. Numpy库的学习(四)

    我们今天继续学习一下Numpy库 接着前面几次讲的,Numpy中还有一些标准运算 a = np.arange(3) print(a) print(np.exp(a)) print(np.sqrt(a) ...

  3. Numpy库的学习(二)

    今天来继续学习一下Numpy库的使用 接着昨天的内容继续 在Numpy中,我们如果想要进行一个判断使用“==” 我们来看下面的代码 vector = np.array([5,10,15,20,25]) ...

  4. Numpy库的学习(一)

    今天来学习一下Python库中,支持高级大量的维度数组与矩阵运算的神奇的Numpy库 Numpy同时也对数组运算提供大量的数学函数,对于大量计算运行效率极好 是大量机器学习框架的基础库 废话不多说,直 ...

  5. numpy库的学习笔记

    一.ndarray 1.numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”. 2.ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相 ...

  6. Numpy库基础___五

    Numpy数据存取 •NumPy的随机数函数 a = np.random.rand(1,2,3) print(a) #[[[0.03339719 0.72784732 0.47527802] # [0 ...

  7. python的numpy库的学习

    1.创建 array(序列类型).asarray.arange.ones.ones_like.zeros.zeros_like.empty.empty_like.eye.identity 2.运算 两 ...

  8. Python Pandas库的学习(一)

    今天我们来学习一下Pandas库,前面我们讲了Numpy库的学习 接下来我们学习一下比较重要的库Pandas库,这个库比Numpy库还重要 Pandas库是在Numpy库上进行了封装,相当于高级Num ...

  9. 【python】numpy库和matplotlib库学习笔记

    Numpy库 numpy:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合.树莓派Python v3默 ...

随机推荐

  1. 服务端预渲染之Nuxt(爬坑篇)

    Nuxt是解决SEO的比较常用的解决方案,随着Nuxt也有很多坑,每当突破一个小技术点的时候,都有很大的成就感,在这段时间里着实让我痛并快乐着.在这里根据个人学习情况,所踩过的坑做了一个汇总和总结. ...

  2. <转载>Android性能优化之HashMap,ArrayMap和SparseArray

    本篇博客来自于转载,打开原文地址已经失效,在此就不贴出原文地址了,如原作者看到请私信我可用地址,保护原创,人人有责.   Android开发者都知道Lint在我们使用HashMap的时候会给出警告—— ...

  3. 使用Git过程中经常会遇到的问题

    目录 git pull如何强制覆盖本地文件 Git如何同时删除本地分支和远程分支 Git如何撤销最近一次提交 Git撤销本地的最后一次提交 Git撤销最近一次远程提交 如何修改提交信息和文件 修改本地 ...

  4. Hystrix源码解析

    1. Hystrix源码解析 1.1. @HystrixCommand原理 直接通过Aspect切面来做的 1.2. feign hystrix原理 它的本质原理就是对HystrixCommand的动 ...

  5. sqlserver2014无法打开报Cannot find one or more components_修复方案

    前言:我跟网上大家的原因基本一样,就是好久没用sqlserver了,中间也对VS进行过卸载升级等,突然有一天发现,打开Sqlserver时打不开了,出了一个弹框:Cannot find one or ...

  6. Linux 桌面玩家指南:10. 没有 GUI 的时候应该怎么玩

    特别说明:要在我的随笔后写评论的小伙伴们请注意了,我的博客开启了 MathJax 数学公式支持,MathJax 使用$标记数学公式的开始和结束.如果某条评论中出现了两个$,MathJax 会将两个$之 ...

  7. 识别率很高的java文字识别技术

    java文字识别程序的关键是寻找一个可以调用的OCR引擎.tesseract-ocr就是一个这样的OCR引擎,在1985年到1995年由HP实验室开发,现在在Google.tesseract-ocr ...

  8. 技能提升丨Seacms 8.7版本SQL注入分析

    有些小伙伴刚刚接触SQL编程,对SQL注入表示不太了解.其实在Web攻防中,SQL注入就是一个技能繁杂项,为了帮助大家能更好的理解和掌握,今天小编将要跟大家分享一下关于Seacms 8.7版本SQL注 ...

  9. colly源码学习

    colly源码学习 colly是一个golang写的网络爬虫.它使用起来非常顺手.看了一下它的源码,质量也是非常好的.本文就阅读一下它的源码. 使用示例 func main() { c := coll ...

  10. 《前端之路》之 this 的使用技巧总结

    06: JS 中 this 的使用技巧总结 this 是 JavaScript 中的关键字. 一.基本认识 在 JS 中我们把 this 关键字当作成一个 快捷方式,用来引用当前调用者. 解释上面这句 ...