AbstractQueuedSynchronizer源码解读--续篇之Condition
1. 背景
在之前的AbstractQueuedSynchronizer源码解读中,介绍了AQS的基本概念、互斥锁、共享锁、AQS对同步队列状态流转管理、线程阻塞与唤醒等内容。其中并不涉及Condition相关的内容。本文主要介绍AQS中Condition的实现即ConditionObject类的源码。
Condition在JUC中使用很多,最常见的就是各种BlockingQueue了。
2. Condition是什么
java.util.concurrent.locks.Condition是JUC提供的与Java的Object中wait/notify/notifyAll类似功能的一个接口,通过此接口,线程可以在某个特定的条件下等待/唤醒。
与wait/notify/notifyAll操作需要获得对象监视器类似,一个Condition实例与某个互斥锁绑定,在此Condition实例进行等待/唤醒操作的调用也需要获得互斥锁,线程被唤醒后需要再次获取到锁,否则将继续等待。
而与原生的wait/notify/notifyAll等API不同的地方在于,JUC提供的Condition具有更丰富的功能,例如等待可以响应/不响应中断,可以设定超时时间或是等待到某个具体时间点。
此外一把互斥锁可以绑定多个Condition,这意味着在同一把互斥锁上竞争的线程可以在不同的条件下等待,唤醒时可以根据条件来唤醒线程,这是Object中的wait/notify/notifyAll不具备的机制
3. 代码解读
3.1 套路
JUC中Condition接口的主要实现类是AQS的内部类ConditionObject,它内部维护了一个队列,我们可以称之为条件队列,在某个Condition上等待的线程被signal/signalAll后,ConditionObject会将对应的节点转移到外部类AQS的等待队列中,线程需要获取到AQS等待队列的锁,才可以继续恢复执行后续的用户代码。
这里给出一个流程:
await流程:
1. 创建节点加入到条件队列
2. 释放互斥锁
3. 只要没有转移到同步队列就阻塞(等待其他线程调用signal/signalAll或是被中断)
4. 重新获取互斥锁
signal流程:
1. 将队列中第一个节点转移到同步队列
2. 根据情况决定是否要唤醒对应线程
这里以我之前在[AbstractQueuedSynchronizer源码解读]画的AQS状态流转图来说明下:
如果一个节点通过ConditionObject#await等方法调用初始化后,在被唤醒之后,会将状态切换至0,也即无状态,随后进入AQS的同步队列,此后就与一般的争锁无异了。
3.2 await方法
public final void await() throws InterruptedException {
// 对中断敏感。
if (Thread.interrupted())
throw new InterruptedException();
// 加到条件队列中。
Node node = addConditionWaiter();
// 完全释放互斥锁(无论锁是否可以重入),如果没有持锁,会抛出异常。
int savedState = fullyRelease(node);
int interruptMode = 0;
/*
* 只要仍未转移到同步队列就阻塞。
* 转移的情况如下:
* 1. 其它线程调用signal将当前线程节点转移到同步队列并唤醒当前线程。
* 2. 其它线程调用signalAll。
* 3. 其它线程中断了当前线程,当前线程会自行尝试进入同步队列。
*/
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
/*
* 获取中断模式。
* 在线程从park中被唤醒的时候,需要判断是否此时被中断,若中断则尝试转移到同步队列。
* 1. 中断且自行进入同步队列,返回THROW_IE(值-1),后续需要抛出InterruptedException。
* 2. 中断且未能自行进入同步队列,则说明有线程调用signal/signalAll唤醒线程并尝试转移到同步队列,
* 返回REINTERRUPT,后续重新中断线程。
* 3. 线程未被中断,返回0,此时需要重试循环判断是否上了同步队列。
*/
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// 重新获取互斥锁过程中如果中断并且interruptMode不为"抛出异常",设置为REINTERRUPT。
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
// 如果线程发生过中断则根据THROW_IE或是REINTERRUPT分别抛出异常或者重新中断。
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
private Node addConditionWaiter() {
Node t = lastWaiter;
/*
* 如果条件队列中最后一个waiter节点状态为取消,
* 则调用unlinkCancelledWaiters清理队列。
*/
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
// 重读lastWaiter。
t = lastWaiter;
}
Node node = new Node(Thread.currentThread(), Node.CONDITION);
// t如果为null, 初始化firstWaiter为当前节点。
if (t == null)
firstWaiter = node;
else
// 将队尾的next连接到node。
t.nextWaiter = node;
lastWaiter = node;
return node;
}
/**
* 移除队列中所有取消节点。
*/
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
// 记录上一个非取消节点。
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
// 断开
t.nextWaiter = null;
if (trail == null)
// 如果trail为null,取当前节点的后继作为头节点的值(next可以为null)。
firstWaiter = next;
else
// 否则把trail连接到当前节点的后继。
trail.nextWaiter = next;
// 如果当前节点没有后继了, 更新lastWaiter为trail, 即上一个非取消节点。
if (next == null)
lastWaiter = trail;
}
else
trail = t;
t = next;
}
}
final boolean isOnSyncQueue(Node node) {
/*
* 节点状态为CONDITION一定是在条件队列,
* 或者如果prev为null也一定是在条件队列。
*
* 同步队列里的节点prev为null只可能是获取到锁后调用setHead清为null,
* 新入队的节点prev值是不会为null的。
* 另外,条件队列里节点是用nextWaiter来维护的,不用next和prev。
*/
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
/*
* 如果next不为null,一定是在同步队列的。
* 这里值得一提的是在AQS的cancelAcquire方法中,
* 一个节点将自己移除出队列的时候会把自己的next域指向自己。
* 即node.next = node;
*
* 从GC效果上来看node.next = node和node.next = null无异,
* 但是这对此处next不为null一定在同步队列上来说,
* 这样可以将节点在同步队列上被取消的情况与普通情况归一化判断。
*/
if (node.next != null)
return true;
/*
* 有可能node.prev的值不为null,但还没在队列中,因为入队时CAS队列的tail可能失败。
* 这是从tail向前遍历一次,确定是否已经在同步队列上。
*/
return findNodeFromTail(node);
}
/**
* 从队列尾部向前遍历判断节点是否在队列中。
*/
private boolean findNodeFromTail(Node node) {
Node t = tail;
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}
private int checkInterruptWhileWaiting(Node node) {
/*
* 1. 线程未中断返回0
* 2. 线程中断且入同步队列成功,返回THROW_IE表示后续要抛出InterruptedException。
* 3. 线程中断且未能入同步队列(由于被signal方法唤醒),则返回REINTERRUPT表示后续重新中断。
*/
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
final boolean transferAfterCancelledWait(Node node) {
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
enq(node);
return true;
}
/*
* 上面CAS失败的原因是signal()方法被调用,状态已经被抢先更新了。
* 这时需要自旋等待节点成功进入同步队列,否则会影响后续的重新获取锁acquireQueued()方法。
* 因为acquireQueued必须在节点成功入队后才可以调用。
*/
while (!isOnSyncQueue(node))
Thread.yield();
return false;
}
/**
* THROW_IE则抛出InterruptedException,
* REINTERRUPT则重新中断当前线程。
*/
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
3.3 signal/signalAll方法
public final void signal() {
// 检查互斥锁持有情况。
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
private void doSignal(Node first) {
do {
// 将firstWaiter设置为后继节点,如果为null,则置lastWaiter为null。
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
// 断开连接。
first.nextWaiter = null;
/*
* 如果转移失败并且下一个节点不为null,则重试。
* 在这里转移失败只可能因为节点被取消。
*/
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
public final void signalAll() {
// 检查互斥锁持有情况。
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
private void doSignalAll(Node first) {
// 将firstWaiter和lastWaiter先清为null。
lastWaiter = firstWaiter = null;
// 从first开始一直遍历到第一个null节点。
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
final boolean transferForSignal(Node node) {
// 必须将状态从CONDITION流转到0,如果失败则说明节点被取消,因为这里不会存在signal的竞争。
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
// 插入同步队列。
Node p = enq(node);
int ws = p.waitStatus;
/*
* 如果前驱节点状态为取消或者无法将状态CAS到SIGNAL(比如可能前驱在此期间被取消了),
* 则需要唤醒参数node节点对应的线程,使其能开始尝试争锁。
*
* 如果将前驱状态切到SIGNAL了,则由相应线程在释放锁之后唤醒node节点对应线程。
*/
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}
4. 思考与总结
至此,已经对ConditionObject的await/signal/signalAll方法源码进行了分析。对于中断不敏感的awaitUninterruptibly, 带有时限的awaitNanos由于大致套路与await无异,不作冗述。
ConditionObject的firstWaiter/lastWaiter以及AQS.Node的nextWaiter都是没有volatile修饰的。这是因为ConditionObject假设在await/signal/signalAll等方法的调用是已经持有互斥锁的。
个人认为ConditionObject这样的设计是有个问题的。即按照Condition接口的定义,在不持锁情况下调用await由子类决定如何处理,通常是抛出InterruptedException。但如果同时有持锁和不持锁的线程调用await方法,可能会对ConditionObject的内部队列造成破坏,后果就是有些成功调用await方法的线程可能永远没有办法被唤醒,因为无法通过队列追溯到它们。也就是非法调用会抛出异常,但仍然会对内部数据结构造成破坏,这其实是有一些不合理的,至少是可以改进的地方。
最简单的处理方式是,对于不持锁的请求抛出异常,不应该依靠await -> fullyRelease这一步来抛出异常,此时按照流程已经调用过addConditionWaiter了。可以在await这类方法前面与signal/signalAll一样预检查一次持锁情况:
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
整体而言,ConditionObject中代码对GC友好,逻辑缜密,读过之后受益匪浅。
AbstractQueuedSynchronizer源码解读--续篇之Condition的更多相关文章
- AbstractQueuedSynchronizer源码解读
1. 背景 AQS(java.util.concurrent.locks.AbstractQueuedSynchronizer)是Doug Lea大师创作的用来构建锁或者其他同步组件(信号量.事件等) ...
- AbstractQueuedSynchronizer 源码解读(转载)
转载文章,拜读了一下原文感觉很不错,转载一下,侵删 链接地址:http://objcoding.com/2019/05/05/aqs-exclusive-lock/ Java并发之AQS源码分析(一) ...
- AbstractQueuedSynchronizer源码分析
AbstractQueuedSynchronizer源码分析 前提 AQS(java.util.concurrent.locks.AbstractQueuedSynchronizer)是并发编程大师D ...
- SDWebImage源码解读之SDWebImageDownloaderOperation
第七篇 前言 本篇文章主要讲解下载操作的相关知识,SDWebImageDownloaderOperation的主要任务是把一张图片从服务器下载到内存中.下载数据并不难,如何对下载这一系列的任务进行设计 ...
- AFNetworking 3.0 源码解读(三)之 AFURLRequestSerialization
这篇就讲到了跟请求相关的类了 关于AFNetworking 3.0 源码解读 的文章篇幅都会很长,因为不仅仅要把代码进行详细的的解释,还会大概讲解和代码相关的知识点. 上半篇: URI编码的知识 关于 ...
- SDWebImage源码解读之SDWebImageManager
第九篇 前言 SDWebImageManager是SDWebImage中最核心的类了,但是源代码确是非常简单的.之所以能做到这一点,都归功于功能的良好分类. 有了SDWebImageManager这个 ...
- Java并发系列[4]----AbstractQueuedSynchronizer源码分析之条件队列
通过前面三篇的分析,我们深入了解了AbstractQueuedSynchronizer的内部结构和一些设计理念,知道了AbstractQueuedSynchronizer内部维护了一个同步状态和两个排 ...
- CyclicBarrier源码解读
1. 简介 JUC中的CyclicBarrier提供了一种多线程间的同步机制,可以让多个线程在barrier等待其它线程到达barrier.正如其名CyclicBarrier含义就是可以循环使用的屏障 ...
- ScheduledThreadPoolExecutor源码解读
1. 背景 在之前的博文--ThreadPoolExecutor源码解读已经对ThreadPoolExecutor的实现原理与源码进行了分析.ScheduledExecutorService也是我们在 ...
随机推荐
- JavaScript是如何面向对象的
一.引言 在16年的10月份,在校内双选会找前端实习的时候,hr问了一个问题:JavaScript的面向对象理解吗?我张口就说"JavaScript是基于原型的!".然后就没什么好 ...
- 02、NetCore2.0优化之Nuget包
02.NetCore2.0优化之Nuget包 在NetCore2.0中的包是如何管理的?如何存储的?微软做了哪些优化工作? -------------------------------------- ...
- Menubutton按钮弹出菜单
#按钮弹出菜单 from tkinter import * root =Tk() def callback(): print('我被调用了') m = Menubutton(root,text = ' ...
- [转]map函数补充
map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 例如,对于li ...
- js常用正则表达式表单验证代码
方法一: var re=/正则表达式/; re.test($("txtid").val()) 方法二: $("txtid").val.match(/正则 ...
- 模拟Paxos算法及其简单学习总结
一.导读 Paxos算法的流程本身不算很难,但是其推导过程和证明比较难懂.在Paxos Made Simple[1]中虽然也用了尽量简化的流程来解释该算法,但其实还是比较抽象,而且有一些细节问题没有交 ...
- python中关于文件的读取和写入
open()和close()方法:使用python的内置函数open()打开一个文件,创建一个file对象,相关的方法才可以调用它进行读写. file object = open(file_name ...
- java代码优化细节
在代码线上运行的过程中,往往会出现很多我们意想不到的错误,不少错误定位到最后往往是一个非常小的原因导致的.然而因为线上环境和开发环境是非常不同的,为了解决一个错误,我们需要先查找错误原因.修改验证.打 ...
- javascript的基础(2)--数据类型介绍
1. number数据类型 所有的数字都是Number数据类型 利用typeof运算符可以返回当前数据的数据类型 特殊值:NaN not a number 不是一个数字 注意 :小数的计算可能产生丢失 ...
- [HNOI2011]赛车游戏
题目描述 名歌手LAALA最近迷上了一款赛车游戏,游戏中开车的玩家在不同的路段需要选择不同的速度,使得自己在最短的时间内到达终点.开始游戏时,车内的初始油量为f,所以游戏的关键是如何在速度和耗油量之间 ...