R语言︱数据分组统计函数族——apply族用法与心得
每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~
———————————————————————————
笔者寄语:apply族功能强大,实用,可以代替很多循环语句,R语言中不要轻易使用循环语句。
| 函数名 | 功能 | 特点 |
| apply | 按行、列运算均值、求和、众数等 | 简单运算 |
| tapply=table apply | 在apply之上加入table功能,可以分组汇总 | table结合,可以分组汇总 |
| lapply=list apply | 都需要数据框格式,可以与list合用,返回仍是list | list用法 |
| sapply=simplify apply=unlist(lapply) | 都需要数据框格式,可以与list合用,返回是矩阵 | 与lapply一样,但是可以输出矩阵格式 |
|
apply |
Apply Functions Over Array Margins 对阵列行或者列使用函数 |
apply(X, MARGIN, FUN, ...) |
|
lapply |
Apply a Function over a List or Vector 对列表或者向量使用函数 |
lapply(X, FUN, ...) |
|
sapply |
Apply a Function over a List or Vector 对列表或者向量使用函数 |
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE) |
|
vapply |
Apply a Function over a List or Vector 对列表或者向量使用函数 |
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE) |
|
tapply |
Apply a Function Over a Ragged Array 对不规则阵列使用函数 |
tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE) |
|
eapply |
Apply a Function Over Values in an Environment 对环境中的值使用函数 |
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE) |
|
mapply |
Apply a Function to Multiple List or Vector Arguments 对多个列表或者向量参数使用函数 |
mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE) |
|
rapply |
Recursively Apply a Function to a List 运用函数递归产生列表 |
rapply(object, f, classes = "ANY", deflt = NULL,how = c("unlist", "replace", "list"), ...) |
1、apply函数
对一个数组按行或者按列进行计算,矩阵纵、横运算(sum,average等)
其中apply中,1等于行,2等于列
> ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
> ma
[,1] [,2] [,3] [,4]
[1,] 1 3 1 7
[2,] 2 4 6 8
> apply(ma, c(1,2), sum)
[,1] [,2] [,3] [,4]
[1,] 1 3 1 7
[2,] 2 4 6 8
> apply(ma, 1, sum)
[1] 12 20
> apply(ma, 2, sum)
[1] 3 7 7 15
> tapply(1:17, fac, sum, simplify = FALSE) $`1` [1] 51 $`2` [1] 57 $`3` [1] 45 $`4` NULL $`5` NULL > tapply(1:17, fac, range) $`1` [1] 1 16 $`2` [1] 2 17 $`3` [1] 3 15 $`4` NULL $`5` NULL
2、tapply
(进行分组统计)
tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE) #把x在index分类下进行fun #例:把x在因子分类下,进行汇总操作 fac <- factor(rep(1:3, length = 4), levels = 1:5) fac [1] 1 2 3 1 Levels: 1 2 3 4 5 tapply(1:4, fac, sum) 1 2 3 4 5 5 2 3 NA NA
#当index不是因子时,可以用as.factor()把参数强制转换成因子
额外案例,实现excel中数据透视表的功能
#利用tapply实现类似于excel里的数据透视表的功能:
> da
year province sale
1 2007 A 1
2 2007 B 2
3 2007 C 3
4 2007 D 4
5 2008 A 5
6 2008 C 6
7 2008 D 7
8 2009 B 8
9 2009 C 9
10 2009 D 10
> attach(da)
> tapply(sale,list(year,province)) #以sale为基,按照year,province的顺序,排列
[1] 1 4 7 10 2 8 11 6 9 12
> tapply(sale,list(year,province),mean)
A B C D
2007 1 2 3 4
2008 5 NA 6 7
2009 NA 8 9 10
3、函数table(求因子出现的频数)
使用格式为:
table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
"ifany", "always"), dnn = list.names(...), deparse.level = 1)
其中参数exclude表示哪些因子不计算。
示例代码:
> d <- factor(rep(c("A","B","C"), 10), levels=c("A","B","C","D","E"))
> d
[1] A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C
Levels: A B C D E
> table(d, exclude="B")
d
A C D E
10 10 0 0
4、函数lapply与函数sapply
每一列数据采用同一种函数形式,比如求X变量得分位数,比如求X变量的循环函数。
lapply的使用格式为:
lapply(X, FUN, ...)
lapply的返回值是和一个和X有相同的长度的list对象,
这个list对象中的每个元素是将函数FUN应用到X的每一个元素。
其中X为List对象(该list的每个元素都是一个向量),
其他类型的对象会被R通过函数as.list()自动转换为list类型。
函数sapply是函数lapply的一个特殊情形,对一些参数的值进行了一些限定,其使用格式为:
sapply(X, FUN,..., simplify = TRUE, USE.NAMES = TRUE)
sapply(*, simplify = FALSE, USE.NAMES = FALSE) 和lapply(*)的返回值是相同的。
如果参数simplify=TRUE,则函数sapply的返回值不是一个list,而是一个矩阵;
若simplify=FALSE,则函数sapply的返回值仍然是一个list。
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
> lapply(x, quantile)
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
> sapply(x, quantile,simplify=FALSE,use.names=FALSE)
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
#参数simplify=TRUE的情况
> sapply(x, quantile)
a beta logic
0% 1.00 0.04978707 0.0
25% 3.25 0.25160736 0.0
50% 5.50 1.00000000 0.5
75% 7.75 5.05366896 1.0
100% 10.00 20.08553692 1.0
5、函数mapply
其中参数MoreArgs表示函数FUN的参数列表。
> mapply(rep, times=1:4, x=4:1) [[1]] [1] 4 [[2]] [1] 3 3 [[3]] [1] 2 2 2 [[4]] [1] 1 1 1 1 #直接使用函数rep的结果: > rep(1:4,1:4) [1] 1 2 2 3 3 3 4 4 4 4
6、vapply {base}——按变量进行函数操作
vapply类似于sapply函数,但是它的返回值有预定义类型,所以它使用起来会更加安全,有的时候会更快。
在vapply函数中总是会进行简化,vapply会检测FUN的所有值是否与FUN.VALUE兼容,
以使他们具有相同的长度和类型。类型顺序:逻辑、整型、实数、复数
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。
必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
FUN.VALUE 一个通用型向量,FUN函数返回值得模板。
> x<-data.frame(a=rnorm(4,4,4),b=rnorm(4,5,3),c=rnorm(4,5,3)) > vapply(x,mean,c(c=0)) a b c 1.8329043 6.0442858 -0.1437202
> k<-function(x)
+ {
+ list(mean(x),sd(x))
+ }
> vapply(x,k,c(c=0))
错误于vapply(x, k, c(c = 0)) : 值的长度必需为1,
但FUN(X[[1]])结果的长度却是2
> vapply(x,k,c(c=0,b=0)) 错误于vapply(x, k, c(c = 0, b = 0)) : 值的种类必需是'double', 但FUN(X[[1]])结果的种类却是'list'
> vapply(x,k,c(list(c=0,b=0))) a b c c 1.832904 6.044286 -0.1437202 b 1.257834 1.940433 3.649194
sapply与vapply函数之间的区别:
> i39 <- sapply(3:9, seq)
> i39
[[1]]
[1] 1 2 3
[[2]]
[1] 1 2 3 4
[[3]]
[1] 1 2 3 4 5
[[4]]
[1] 1 2 3 4 5 6
[[5]]
[1] 1 2 3 4 5 6 7
[[6]]
[1] 1 2 3 4 5 6 7 8
[[7]]
[1] 1 2 3 4 5 6 7 8 9
> sapply(i39, fivenum)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1.0 1.0 1 1.0 1.0 1.0 1
[2,] 1.5 1.5 2 2.0 2.5 2.5 3
[3,] 2.0 2.5 3 3.5 4.0 4.5 5
[4,] 2.5 3.5 4 5.0 5.5 6.5 7
[5,] 3.0 4.0 5 6.0 7.0 8.0 9
> vapply(i39, fivenum,
+ c(Min. = 0, "1st Qu." = 0, Median = 0, "3rd Qu." = 0, Max. = 0))
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
Min. 1.0 1.0 1 1.0 1.0 1.0 1
1st Qu. 1.5 1.5 2 2.0 2.5 2.5 3
Median 2.0 2.5 3 3.5 4.0 4.5 5
3rd Qu. 2.5 3.5 4 5.0 5.5 6.5 7
Max. 3.0 4.0 5 6.0 7.0 8.0 9
7、eapply {base}
eapply函数通过对environment中命名值进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
env 将被使用的环境
all.names 逻辑值,指示是否对所有值使用该函数
USE.NAMES 逻辑值,指示返回的列表结果是否包含命名
> require(stats) > > env <- new.env(hash = FALSE) # so the order is fixed > env$a <- 1:10 > env$beta <- exp(-3:3) > env$logic <- c(TRUE, FALSE, FALSE, TRUE) > # what have we there? > utils::ls.str(env) a : int [1:10] 1 2 3 4 5 6 7 8 9 10 beta : num [1:7] 0.0498 0.1353 0.3679 1 2.7183 ... logic : logi [1:4] TRUE FALSE FALSE TRUE > > # compute the mean for each list element > eapply(env, mean) $logic [1] 0.5 $beta [1] 4.535125 $a [1] 5.5 > unlist(eapply(env, mean, USE.NAMES = FALSE)) [1] 0.500000 4.535125 5.500000 > > # median and quartiles for each element (making use of "..." passing): > eapply(env, quantile, probs = 1:3/4) $logic 25% 50% 75% 0.0 0.5 1.0 $beta 25% 50% 75% 0.2516074 1.0000000 5.0536690 $a 25% 50% 75% 3.25 5.50 7.75 > eapply(env, quantile) $logic 0% 25% 50% 75% 100% 0.0 0.0 0.5 1.0 1.0 $beta 0% 25% 50% 75% 100% 0.04978707 0.25160736 1.00000000 5.05366896 20.08553692 $a 0% 25% 50% 75% 100% 1.00 3.25 5.50 7.75 10.00
8、rapply {base}
rapply是lapply的递归版本
rapply(X, FUN, classes = "ANY", deflt = NULL, how = c("unlist", "replace", "list"), ...)
X 一个列表
classes 关于类名的字符向量,或者为any时则匹配任何类
deflt 默认结果,如果使用了how=”replace”,则不能使用
how 字符串匹配三种可能结果
参考文献:
菜鸟的成长的博客:http://blog.sina.com.cn/s/blog_6caea8bf0100xkpg.html
拓展一:lapply的用法
a=function(x)[ x=names(x) x[x=="a"] } lapply(y,a)
从这段代码大致可以了解到,lapply精髓在输入与输出。
每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~
———————————————————————————
R语言︱数据分组统计函数族——apply族用法与心得的更多相关文章
- 数据分组统计函数族——apply族用法与心得
笔者寄语:apply族功能强大,实用,可以代替很多循环语句,R语言中不要轻易使用循环语句. 原文链接: https://blog.csdn.net/sinat_26917383/article/det ...
- R语言︱数据集分组、筛选(plit – apply – combine模式、dplyr、data.table)
R语言︱数据集分组 大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较. 一.日期分组 1.关于时间的包都有很多 ...
- R语言数据接口
R语言数据接口 R语言处理的数据一般从外部导入,因此需要数据接口来读取各种格式化的数据 CSV # 获得data是一个数据帧 data = read.csv("input.csv" ...
- R语言数据的导入与导出
1.R数据的保存与加载 可通过save()函数保存为.Rdata文件,通过load()函数将数据加载到R中. > a <- 1:10 > save(a,file='d://data/ ...
- R语言 数据重塑
R语言数据重塑 R语言中的数据重塑是关于改变数据被组织成行和列的方式. 大多数时间R语言中的数据处理是通过将输入数据作为数据帧来完成的. 很容易从数据帧的行和列中提取数据,但是在某些情况下,我们需要的 ...
- R语言数据预处理
R语言数据预处理 一.日期时间.字符串的处理 日期 Date: 日期类,年与日 POSIXct: 日期时间类,精确到秒,用数字表示 POSIXlt: 日期时间类,精确到秒,用列表表示 Sys.date ...
- 最棒的7种R语言数据可视化
最棒的7种R语言数据可视化 随着数据量不断增加,抛开可视化技术讲故事是不可能的.数据可视化是一门将数字转化为有用知识的艺术. R语言编程提供一套建立可视化和展现数据的内置函数和库,让你学习这门艺术.在 ...
- 第三篇:R语言数据可视化之条形图
条形图简介 数据可视化中,最常用的图非条形图莫属,它主要用来展示不同分类(横轴)下某个数值型变量(纵轴)的取值.其中有两点要重点注意: 1. 条形图横轴上的数据是离散而非连续的.比如想展示两商品的价格 ...
- 第二篇:R语言数据可视化之数据塑形技术
前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节 ...
随机推荐
- 6.Ray-消息订阅器编写
消息订阅器: Ray是基于Event Sourcing设计的ES/Actor框架,消息发布后需要订阅处理,订阅器主要有以下两类: CoreHandler消息订阅器=RabbitSub+SubHandl ...
- Java 解压zip压缩包
因为最近项目需要批量上传文件,而这里的批量就是将文件压缩在了一个zip包里,然后读取文件进行解析文件里的内容. 因此需要先对上传的zip包进行解压.以下直接提供代码供参考: 1.第一个方法是用于解压z ...
- 00_Python面试题_迭代更新
一.Python是什么类型的语言,以及和其他语言对比 1.Python是一种解释性语言,他和C语言以及C衍生的语言不通,在Python运行之前不需要编译,其他解释语言还有Ruby.PHP. 2.Pyt ...
- mui点击加载,下拉刷新,上下整合代码
mui点击加载,下拉刷新,上下整合代码 mui的是上拉加载,但是老大说要做成点击加载,所以就改了一些 代码应该是有些问题的,测到了大家就自己改下. 首先要说明的是,有下拉刷新的页面一定要是双webvi ...
- [Sdoi2017]相关分析 [线段树]
[Sdoi2017]相关分析 题意:沙茶线段树 md其实我考场上还剩一个多小时写了40分 其实当时写正解也可以吧1h也就写完了不过还要拍一下 正解代码比40分短2333 #include <io ...
- [Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...
- BZOJ 4318: OSU! [DP 概率]
传送门 题意:变成了告诉每个操作的成功概率,并且得分是三次方 一样....分别维护$x,\ x^2,\ x^3$的期望就行了 注意$x^3$是我们最终求的得分,即使失败得分也要累加上之前的 #incl ...
- E 洛谷 P3598 Koishi Loves Number Theory[数论]
题目描述 Koishi十分喜欢数论. 她的朋友Flandre为了检测她和数论是不是真爱,给了她一个问题. 已知 给定和个数,求对取模. 按照套路,呆萌的Koishi当然假装不会做了,于是她来向你请教这 ...
- SDN第四次作业
作业链接 1.阅读 了解SDN控制器的发展 http://www.sdnlab.com/13306.html http://www.docin.com/p-1536626509.html 了解ryu控 ...
- VS2012编译log4cpp1.1.1版本
1.起因 看到官方网站上的log4cpp的代码已经更新到了1.1.1,而我目前使用的1.0.3版本,所以想使用下最新版本.在使用过程中发现相对于老版本,新版本的变化还是比较大的,特写下此文记录下. 2 ...