汉诺塔I && II
汉诺塔I
题目链接:https://www.nowcoder.com/questionTerminal/7d6cab7d435048c4b05251bf44e9f185
题目大意:
略
分析:
利用汉诺塔与二进制的关系来做。
如何用二进制解汉诺塔:https://www.bilibili.com/video/av7398130/
代码如下:
class Hanoi {
public:
// 计算x的二进制位数
inline int getBits(int x) {
int cnt = ;
while(x >>= ) ++cnt;
return cnt;
}
vector<string> getSolution(int n) {
vector< string > ans;
string s[] = {"left", "mid", "right"};
vector< int > arr;
arr.resize(n, );
// tot表示总移动次数
int tot = ( << n) - ;
int cnt = ;
while(cnt++ < tot) {
int lowbit = cnt & (-cnt);
int bitlen = getBits(lowbit) - ;
int b = + (n - bitlen) % ;// 偏移,b = 1往右,b = 2往左
ans.push_back("move from " + s[arr[bitlen]] + " to " + s[(arr[bitlen] + b) % ]);
arr[bitlen] = (arr[bitlen] + b) % ;
}
return ans;
}
};
汉诺塔II
题目链接:https://www.nowcoder.com/questionTerminal/b2d552cd60b7415fad2612a32e799812?toCommentId=2927834
题目大意:
略
分析:
先给出4个盘子的表(三根柱子的序号分别为0, 1, 2):

容易看出n个盘子需要移动2n次。
首先我们看红线分割的两块,令8~15行的0号,1号,2号盘子的位置加上2再模3,他们的数值刚好等于0~7行的0号,1号,2号盘子的位置。
再看绿线分割的0~7行,另4~7行的0号,1号盘子的位置加上1再模3,他们的数值刚好等于0~3行的0号,1号盘子的位置。
发现规律了没有?
比如有汉诺塔的位置序列[2, 1, 1, 2],序列最后一个数为2,于是step([2, 1, 1, 2])就等于1000B + step([(2 + 2) % 3, (1 + 2) % 3, (1 + 2) % 3]) = 1000B + step([1, 0, 0]),然后step([1, 0, 0])的最后一个数为0,于是step([1, 0, 0]) = step([1, 0]),直接往前进,并不需要上移,同理step([1, 0]) = step([1]), 对于step([1]),只有一个数字,直接取值,所以step([2, 1, 1, 2])最终等于1001B。
再比如有汉诺塔的位置序列[2, 0, 1, 2],序列最后一个数为2,于是step([2, 0, 1, 2])就等于1000B + step([(2 + 2) % 3, (0 + 2) % 3, (1 + 2) % 3]) = 1000B + step([1, 2, 0]),然后step([1, 2, 0])的最后一个数为0,于是step([1, 2, 0]) = step([1, 2]),step([1, 2])的最后一个数字是2,于是step([1, 2]) = 10B + step([(1 + 2) % 3]) = 10B + step([0]), 对于step([0]),只有一个数字,直接取值,所以step([2, 1, 1, 2])最终等于1010B。
简单来说,就是末尾数字为0,就不变;末尾数字不为0,就让前面的数字加上这个数字再模3,然后求子问题,同时要加上这一位的权值,比如它是第5个数字,就要加上10000B;如果是第3个数字,就要加上100B。
不要问我原理,我是结合二进制找规律找出来的。
代码如下:
class Hanoi {
public:
int chkStep(vector<int> &arr, int n, int b = ) {
if(n == ) return ;
int tmp = (arr[n - ] + b - ) % ;
return ( << (n - )) * (tmp != ) + chkStep(arr, n - , b + tmp);
}
};
汉诺塔I && II的更多相关文章
- 汉诺塔问题II(模拟)
汉诺塔问题II Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1556 Solved: 720 Description 汉诺塔(又称河内塔)问题是源于 ...
- HDU-1207 汉诺塔II
汉诺塔 四根所需要的步数的规律: 规律:a[1]=1;a[2]=a[1]+2;a[3]=a[2]+2;(2个加2^1)a[4]=a[3]+4;a[5]=a[4]+4;a[6]=a[5]+4;(3个加 ...
- 汉诺塔系列问题: 汉诺塔II、汉诺塔III、汉诺塔IV、汉诺塔V、汉诺塔VI
汉诺塔 汉诺塔II hdu1207: 先说汉若塔I(经典汉若塔问题),有三塔.A塔从小到大从上至下放有N个盘子.如今要搬到目标C上. 规则小的必需放在大的上面,每次搬一个.求最小步数. 这个问题简单, ...
- HDU 1207 汉诺塔II (找规律,递推)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1207 汉诺塔II Time Limit: 2000/1000 MS (Java/Others) ...
- hdu 1207 汉诺塔II (DP+递推)
汉诺塔II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- 1207 ACM 汉诺塔II 数学
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1207 中文题目,在原来三个柱子的情况下(汉诺塔一),增加了一个柱子,难度也增加了. 思路: 思考时尽量和汉 ...
- HDU 1207 汉诺塔II (递推)
经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上 ...
- Hanoi II——汉诺塔步数求解进阶问题
在NOJ上遇到关于汉诺塔步数的求解问题 开始读时一脸懵逼,甚至不知道输入的数据是什么意思 题目描述:给出汉诺塔的两个状态,从初始状态移动到目的状态所需要的最少步数 对于初级汉诺塔步数问题,我们可以直接 ...
- 汉诺塔III 递推题
题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...
随机推荐
- 浅析Servlet执行原理
在JavaWeb学习研究中,Servlet扮演重要的作用,学好它,是后续JavaWeb学习的良好基础.无论是SSH,还是SSM,微服务JavaWeb技术,都应先学好Servlet,从而达到事半功倍的效 ...
- select标签 禁止选择但又能通过序列化form表单传值到后台
前言 项目开发中,我们可能会碰到这样的需求:select标签,禁止选择但又能通过序列化form表单传值到后台,但是当我们使用disabled="disabled"时发现,无法序列化 ...
- 部署ionic开发环境
(1)安装Node.js 首先您需要安装 Node.js,后续会使用到其中的 NPM 工具. (2)安装JDK 需要安装JDK,官网下载安装.命令窗口中输入 java -Xmx2048m -versi ...
- C# 在PPT中绘制形状(shape)
概述 本篇文章将介绍C# 在PPT幻灯片中操作形状(shape)的方法.这里主要涉及常规形状,如箭头.矩形.圆形.三角形.多边形.不规则形状等.下面的示例中,可以通过绘制形状,并设置相应格式等.示例包 ...
- MVC各层介绍使用---初步理解
controller层负责请求的转发,以及数据的转发: service层负责项目的业务逻辑处理: dao层负责与数据库的数据查询与连接,其中的bean层负责数据的整理转发: view层负责JSP,ht ...
- C# 委托还能这样用
一直找不到一种能够让很多对象都能在几乎同时接收到通知的方法.介绍下目前在用的,希望能够抛砖引玉. 首先随便贴一下观察者模式的两接口,观察者模式自行搜索设计模式. public interface IS ...
- css3自适应布局单位vw,vh你知道多少?
视口单位(Viewport units) 什么是视口? 在桌面端,视口指的是在桌面端,指的是浏览器的可视区域:而在移动端,它涉及3个视口:Layout Viewport(布局视口),Visual Vi ...
- js 骂人不带脏字 (!(~+[]) + {})[--[~+""][+[]] * [~+[]] + ~~!+[]] + ({} + [])[[~!+[]] * ~+[]] 图解
看到掘金上翻出一个老梗,前端如何不带脏字得骂产品经理傻逼(sb),复制(!(~+[]) + {})[--[~+""][+[]] * [~+[]] + ~~!+[]] + ({} + ...
- loj#6073. 「2017 山东一轮集训 Day5」距离(树链剖分 主席树)
题意 题目链接 Sol 首先对询问差分一下,我们就只需要统计\(u, v, lca(u, v), fa[lca(u, v)]\)到根的路径的贡献. 再把每个点与\(k\)的lca的距离差分一下,则只需 ...
- 第十课html5 新增标签及属性 html5学习5
一.常用新增标签 1.header:定义页面的页眉头部 2.nav:定义导航栏 3.footer:定义页面底部,页脚 4.article:定义文章 5.section:定义区域 6.aside:定义侧 ...