2015-03-24

长江后浪推前浪,4G建设方兴未艾,业界关于5G的讨论已如火如荼。对于每一代移动通信,空口技术都相当于王冠上的明珠。

在月初的世界移动通信大会上,华为发布了面向5G的新空口,并展出了涵盖基础波形、多址方式、信道编码、双工模式等在内的系列化5G空口候选新技术,成为业界瞩目的焦点,展区现场总是被围得水泄不通(有图有真相哦)。

几乎所有客户都对灵活自适应的空口波形技术F-OFDM(Filtered OFDM)和成倍提升频谱效率的多址技术SCMA(Sparse Code Multiple Access)兴趣盎然,今天我们就以大话的方式,来聊一聊这两大新空口候选技术。


图1巴展华为5G新空口展示区

咦,为啥是候选?是因为谦虚吗?这个问题问的很好。低调只是一方面,另外是因为5G标准预计16年才会启动,现在提的技术当然都是候选啦。

3G时代的空口核心技术是啥?CDMA!4G的空口核心技术是啥?OFDM!这些都难不倒大家,那5G时代的空口核心技术会是啥?

在回答这个问题之前,我们要先回答的是,5G时代对空口技术有什么新的要求?

5G时代的应用将空前繁荣,不同应用对空口技术要求也是复杂多样的,因此最重要的当然是灵活性和应变能力,正如三国王弼所说“用无常道,事无轨度,动静屈伸,唯变所适”,一个统一的空口必须能解决所有问题,灵活适配各种业务,不管你是自动驾驶要求的1ms时延,还是3D全息影像要求的xGbps的带宽,亦或是每平方公里几十万的物联网传感器连接数,通通都能Hold住,频谱效率再翻个几倍,那运营商就再也不用担心网络能力问题啦,so easy!而F-OFDM与SCMA正是构建5G自适应新空口的基础。

温故而知新,在聊第一个核心技术F-OFDM之前,我们先简单回顾一下OFDM这个技术,看看OFDM为什么满足不了5G时代的要求。OFDM将高速率数据通过串并转换调制到相互正交的子载波上去,并引入循环前缀,较好的解决了令人头疼的码间串扰问题,在4G时代大放异彩。但OFDM最主要问题就是不够灵活。

我们前面提到,未来不同的应用,对于技术的要求迥异,比如端到端1ms时延的车联网业务,要求极短的时域Symbol和TTI,这就需要频域较宽的子载波带宽;而物联网的多连接场景,单传感器传送数据量极低,但对系统整体连接数要求很高,这就需要在频域上配置比较窄的子载波带宽,而在时域上,Symbol的长度以及TTI都可以足够长,几乎不需要考虑码间串扰问题,也就不需要再引入CP,同时异步操作还可以解决终端省电的问题。5G的这些灵活的要求,对于OFDM来说,真的是做不到啊!为啥呢?

我们来看下OFDM的时频资源分配方式(如图2),在频域子载波带宽是固定的15KHz(7.5KHz仅用于MBSFN),而子载波带宽确定之后,其时域Symbol的长度、CP长度等也就基本确定啦。

图2 OFDM的时频资源分配方式

为了更好理解,我们可以把系统的时频资源理解成一节车厢(图3),采用OFDM方案装修的话,火车上只能提供固定大小的硬座(子载波带宽),所有人,不管胖子瘦子、有钱没钱,都只能坐一样大小的硬座。这显然不科学、不人性化嘛,也无法满足人民日益增长的物质文化需要啊。

对于5G我们希望座位和空间都能够根据乘客的高矮胖瘦灵活定制,硬座、软座、卧铺、包厢,想怎么调整都行,这才是自适应的和谐号列车嘛。这一切,通过华为提出的F-OFDM就可以做到。


图3
OFDM/F-OFDM车厢截面对比图

从图4我们可以详细看到F-OFDM能为不同业务提供不同的子载波带宽和CP配置,以满足不同业务的时频资源需求。这时一定有人会问,不同带宽的子载波之间,本身不再具备正交的特性了,就需要引入保护带宽啊,比如OFDM就需要10%的保护带宽,这样一来,F-OFDM灵活性是保证了,频谱利用率会不会降低呀?就像这些奇奇怪怪形状和大小的座位都挤在一起,火车空间利用率肯定会降低啊,正所谓鱼与熊掌不可兼得,灵活性与系统开销看起来就是一对矛盾啊。

但是,F-OFDM真的可以兼得哦,通过优化滤波器的设计,可以把不同带宽子载波之间的保护频带最低做到一个子载波带宽,真是彪悍啊!!!

图4 F-OFDM的时频资源分配方式

好了,第一个核心技术F-OFDM就介绍完了。聪明的大家一定会追问,F-OFDM解决了业务灵活性的问题,对于5G,这就够了吗?当然不够,我们还得再考虑考虑怎么利用有限的频谱,提高效率,容纳更多用户,提升更高吞吐率的问题啊。

还是用火车的例子吧,虽然我们针对不同业务需求,划分了不同的座位,但是怎么在这一列有限空间的火车里,装更多的人呢?伟大的人民总是有无穷无尽的智慧,最简单的办法请往下看,系统容量瞬间翻番不是梦啊。


图5 系统容量翻番案例

不过等等,这样系统容量是扩大了,但是用户都挤在一起,彻底没法区分了,多用户解调就成Mission
Impossible了,此路不通啊,还是得想其他办法。

前面我们通过F-OFDM已经实现了在频域和时域的资源灵活复用,并把保护带宽降到了最小,为了进一步压榨频谱效率,还有哪些域的资源能复用呢?最容易想到的当然是空域和码域啊!

空域的MIMO技术在LTE时代就提出来了,在5G时代会通过更多的天线数来进一步发扬光大。那码域呢,在LTE时代它好像被遗忘了,在5G时代能不能再发挥一把余热呢?Bingo!天才的想法,总是在这么不经意间灵光闪现!华为提出第二个核心技术SCMA(Sparse Code Multiple Access),正是采用这一思路,引入稀疏码本,通过码域的多址实现了频谱效率的3倍提升,下面我们来详细探究一下。

F-OFDM已经实现了火车座位(子载波)根据旅客(业务需求)进行了自适应,进一步提升频谱效率就是需要在有限的座位(子载波)上塞进更多用户。方法说来也简单,座位就那么多,大家挤挤呗。

打个比方,4个同类型的并排座位,我们完全可以塞6个人进去挤一挤嘛,这样不就轻松的实现了1.5倍的频谱效率提升了吗?听起来道理很简单吧,可是实现起来可不简单哦。这就涉及SCMA的第一个关键技术—低密度扩频,把单个子载波的用户数据扩频到4个子载波上,然后6个用户共享这4个子载波(参见图6)。之所以叫低密度扩频,是因为用户数据只占用了其中2个子载波(图中有颜色的格子),另外2个子载波是空的(图中白色的格子),这就相当于6个乘客坐4个座位,那每个乘客的屁股最多坐两个座位嘛。这也是SCMA中Sparse(稀疏)的来由。

为啥一定要稀疏呢?如果不稀疏就是在全载波上扩频,那同一个子载波上就有6个用户的数据,冲突太厉害,多用户解调彻底就没法干啦。

图6 SCMA原理图

但是4个座位(子载波)塞了6个用户之后,乘客之间就不严格正交了(每个乘客占了两个座位啊,没法再通过座位号(子载波)来区分乘客了),如图所示,单一子载波上还是有3个用户的数据冲突了,多用户解调还是存在困难啊。

这时候我们就用到了SCMA第二个关键技术,叫做高维调制。高维调制这个概念非常抽象,因为我们传统的IQ调制只有两维啊,幅度和相位,多出来的维代表啥呢?这里需要大家开一下脑洞,想象一下三体世界里半人马座α星人把一个质子展开到多维空间雕刻电路后再降维的过程,最终一个质子变成了一个无所不能的计算机,质子还是那个质子,不过功能大大增强啦。

同样,我们通过高维调制技术,调制的还是相位和幅度,但是最终使得多用户的星座点之间欧氏距离拉的更远,多用户解调和抗干扰性能大大增强了。每个用户的数据都使用系统分配的稀疏码本进行了高维调制,而系统又知道每个用户的码本,就可以在不正交的情况下,把不同用户最终解调出来啦。这就相当于虽然我没法再用座位号来区分乘客,但是我给这些乘客贴上不同颜色的标签,结合座位号我还是能够把乘客给区分出来。

就这样,SCMA在使用相同频谱的情况下,通过引入码域的多址,大大提升了频谱效率,通过使用数量更多的载波组,并调整稀疏度(多个子载波中单用户承载数据的子载波数),频谱效率可以提升3倍甚至更高。

好啦,关于F-OFDM和SCMA我们就介绍到这儿吧,相信有了这两大空口关键技术支撑, 5G时代将带给我们更多革命性的业务体验,让我们拭目以待吧!

华为5G空口新技术(2015年)的更多相关文章

  1. 华为5G折叠屏幕适配

    华为5G折叠屏幕的发布,迎来新的一个设备——移动端的折叠设备华为Max;华为Max设备分辨率有以下几种 8.0,6.8,6.38,这三种场景下页面展示都是不一样的表现,需要我们在开发中注意监听屏幕变化 ...

  2. LTE空口协议——是空口3GPP协议 不是网络IP协议

    [LTE基础知识]LTE空口协议分析 from:https://www.mscbsc.com/viewnews-102038.html控制面协议 控制面协议结构如下图所示. PDCP在网络侧终止于eN ...

  3. python构造wireshark可以解析的LTE空口数据

    Wireshark是可以解析LTE的空口数据.但是在wireshark的实现中,这些数据都是被封装到UDP报文中.然后根据wireshark的格式文件对LTE的数据加上头信息.头信息的定义参考附件pa ...

  4. 华为交换机Console口属性配置

    华为交换机Console口属性配置 一.设置通过账号和密码(AAA验证)登陆Console口 进入 Console 用户界面视图 <Huawei>system-view [Huawei]u ...

  5. 华为5G在印度被禁

    前段时间,澳大利亚政府以“担心外国渗透”为由,决定禁止华为为建设新的5G网络提供设备.这让大家不禁猜测,难道华为的5G真的被国外市场禁入了? 对此,华为表达出了极大的失落感,并在一份声明中称,“政府告 ...

  6. Cisco AP-Sniffer模式空口抓包

     第一步:WLC/AP侧 配置AP为sniffer模式: 配置提交后,AP会重启,并且将不能发出SSID为clients提供服务. 第二步:一旦AP重新加入WLC,配置AP抓取的信道和抓取后的数据包发 ...

  7. 无线基站侧的信令风暴根因——频繁的释放和连接RRC产生大量信令、设备移动导致小区重选信令增加、寻呼信令多

    全局思维(核心网和无线基站侧都会有信令风暴): LTE网络系统可能出现信令风暴的原因,大致可以总结出以下几点: 1.网络架构的变化,导致4G核心网信令流量较2G/3G大幅增加 a)架构扁平化:LTE网 ...

  8. 5G为何采纳华为力挺的Polar码?一个通信工程师的大实话

    Polar码被采纳为5G eMBB场景的控制信道编码,这两天连续被这条消息刷屏,连吃瓜群众都直呼好爽. 然而,随着媒体报道的持续发酵,真相在口口相传中变了形,不乏夸大不实之嫌,小编终于坐不住了,也想吐 ...

  9. [转][业界动态] 5G为何采纳华为力挺的Polar码?一个通信工程师的大实话

    本文转自:http://xinsheng.huawei.com/cn/index.php?app=forum&mod=Detail&act=index&id=3264791 P ...

随机推荐

  1. 一种开发模式:ajax + ashx + UserControl

    一.ajax+ashx模式的缺点     在web开发过程中,为了提高网站的用户体验,或多或少都会用到ajax技术,甚至有的网站全部采用ajax来实现,大量使用ajax在增强用户体验的同时会带来一些负 ...

  2. 让Lua支持Linq吧

    第一次接触Linq是在使用C#的时候,这种语法,在处理列表数据非常方便.如果想了解Linq的更多内容可以百度一下Linq,不过你不了解也没关系,让我在Lua中给你展示一下Linq的魅力.简单点说,Li ...

  3. C# 3.0新语言特性和改进(一)

    引言 关于C#3.0的特性,园子里已经有了一大把,可能大家都很熟悉了,虽然本人开发中使用过,但自己还是需要记录一下,总结一下.同时也是后面写Linq知识的基础.希望有兴趣的朋友,可以看看. C# 3. ...

  4. StackExchange.Redis帮助类解决方案RedisRepository封装(字符串类型数据操作)

    本文版权归博客园和作者本人共同所有,转载和爬虫请注明原文链接 http://www.cnblogs.com/tdws/tag/NoSql/ 目录 一.基础配置封装 二.String字符串类型数据操作封 ...

  5. POI操作Excel

    POI和Excel简介 JAVA中操作Excel的有两种比较主流的工具包: JXL 和 POI .jxl 只能操作Excel 95, 97, 2000也即以.xls为后缀的excel.而poi可以操作 ...

  6. java Io文件输入输出流 复制文件

    package com.hp.io; import java.io.FileInputStream; import java.io.FileNotFoundException; import java ...

  7. ASP模拟POST请求异步提交数据的方法

    这篇文章主要介绍了ASP模拟POST请求异步提交数据的方法,本文使用MSXML2.SERVERXMLHTTP.3.0实现POST请求,需要的朋友可以参考下 有时需要获取远程网站的某些信息,而服务器又限 ...

  8. 基于Nuclear的Web组件-Todo的十一种写法

    刀耕火种 刀耕火种是新石器时代残留的农业经营方式.又称迁移农业,为原始生荒耕作制. var TodoApp = Nuclear.create({ add: function (evt) { evt.p ...

  9. ArcGIS Engine开发之书签加载

    ArcGIS中书签是保存特定视图范围的快捷方式.使用书签保存关注的视图范围,可在需要时快速定位.查看与浏览.书签功能主要用到IMapBookmarks.ISpatialBookmark和IAOIBoo ...

  10. Android Xfermode 学习笔记

    一.概述 Xfermode全名transfer-mode,其作用是实现两张图叠加时的混合效果. 网上流传的关于Xfermode最出名的图来源于AndroidSDK的samples中,名叫Xfermod ...