3622: 已经没有什么好害怕的了

题意:和我签订契约,成为魔法少女吧

真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求方案数


PS:洛谷月赛拿到了一个Modoka的挂件O(∩_∩)O哈哈~




总的方案数就是\(n!\),相当于一个做全排列

恰好多k个,那么就是a>b的有\(k=k+\frac{n-k}{2}\)个

恰好\(\rightarrow\)容斥

\[=\ \ge k个的配对方案数\ -\ \ge k+1个\ +\ \ge k+2个\ ...
\]

\(\ge i\)个就是先选出i对a>b的,剩下的任意排列

用个dp吧,先排序,求出\(g[i]\)表示\(a_i\)比\(g[i]\)个b大

\(f[i][j]\)表示前i个a选出j对a>b的方案数

\[ans= \sum_{i=k}^n (-1)^{i-k}f[n][i](n-i)!
\]



然后就一直WA...
原因是,你忘了spring吗,原因相同,我们算方案的时候重复了,每个k+i个配对的方案被考虑了 $\binom{k+i}{k}$ 次呀,应该只被考虑一次才对

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=2005, P=1e9+9;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, k, a[N], b[N];
ll f[N][N], fac[N], inv[N], facInv[N]; int g[N];
inline ll C(int n, int m) {return fac[n]*facInv[m]%P*facInv[n-m]%P;}
void dp() {
int now=0;
for(int i=1; i<=n; i++) {
while(now<n && a[i]>b[now+1]) now++;
g[i] = now;
}
for(int i=0; i<=n; i++) f[i][0]=1;
for(int i=1; i<=n; i++)
for(int j=1; j<=g[i]; j++) f[i][j] = (f[i-1][j] + f[i-1][j-1]*(g[i]-j+1)%P )%P;// printf("f %d %d %lld\n",i,j,f[i][j]);
}
int main() {
freopen("in","r",stdin);
n=read(); k=read(); if((n+k)&1) {puts("0"); return 0;}
k += (n-k)/2;
for(int i=1; i<=n; i++) a[i]=read();
for(int i=1; i<=n; i++) b[i]=read();
sort(a+1, a+1+n); sort(b+1, b+1+n);
inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
}
dp();
ll ans=0;
for(int i=k; i<=n; i++) ( ans += ( ((i-k)&1) ? -1 : 1 ) * fac[n-i] * f[n][i]%P * C(i, k)%P )%=P;
printf("%lld\n",(ans+P)%P);
}

BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]的更多相关文章

  1. bzoj 3622 已经没有什么好害怕的了 类似容斥,dp

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1213  Solved: 576[Submit][Status][ ...

  2. BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)

    今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...

  3. [BZOJ 3622]已经没有什么好害怕的了

    世萌萌王都拿到了,已经没有什么好害怕的了——    (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗?  (作大死) 这 ...

  4. ●BZOJ 3622 已经没有什么好害怕的了

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K ...

  5. bzoj 3622 已经没有什么好害怕的了——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...

  6. 解题:BZOJ 3622 已经没有什么好害怕的了·

    题面 用来学习二项式反演的题目 大于等于/小于等于 反演出 恰好等于 设前者为f(n),后者为g(n),则有$f(n)=\sum\limits_{i=0}^nC_n^ig(n)<->g(n ...

  7. BZOJ 3622: 已经没有什么好害怕的了(二项式反演)

    传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\) ...

  8. 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  9. 【BZOJ 3622】3622: 已经没有什么好害怕的了(DP+容斥原理)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 683  Solved: 328 Description Input ...

随机推荐

  1. 程序员之殇 —— (The Beginning of the End)噩梦、崩坏

    Look at all those faces out there (当我环视周遭的一张张脸孔) We are so different(我们是如此的不同) But we have one thing ...

  2. FSFS和VDFS存储方式的区别

    简单来说这个是VisualSVN基于FSFS文件系统格式扩展的.也就是说,分布式版本管理DVCS兴起之后,大家发现多个仓库的好处了,开始给SVN增加这个功能. 至于FSFS本身是SVN在2004年开始 ...

  3. 如何开发由Create-React-App 引导的应用(四)

    此文章是翻译How to develop apps bootstrapped with Create React App 官方文档 系列文章 如何开发由Create-React-App 引导的应用 如 ...

  4. beetl模板引擎使用笔记

    maven项目pom: <dependency> <groupId>com.ibeetl</groupId> <artifactId>beetl< ...

  5. python环境搭建--pycharm的安装及使用

    学习网址: --菜鸟教程(2.0和3.0) http://www.runoob.com/python/python-tutorial.html http://www.runoob.com/python ...

  6. 武侠--生活--java

    一.名词解释 1.向上转型 大白话:村支书通知你爸去大队领过年发的面粉,结果你爸不在家,你装成你爸去了,村支书一看,行,你具有你爸的所有功能,就给了你. 官方解释:子类引用的对象转换为父类类型称为向上 ...

  7. 使用BIOS进行键盘输入和磁盘读写

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  8. 针对php脚本文件执行锁定的代码,避免脚本在同一时间重复运行

    <?php//针对php脚本文件执行锁定的代码,避免脚本在同一时间重复运行,http://ken.01h.net/define('PHP_LOCK_FILE', dirname(__FILE__ ...

  9. 《JavaScript权威指南》读书笔记——JavaScript核心

    前言 这本由David Flanagan著作,并由淘宝前端团队译的<JavaScript权威指南>,也就是我们俗称的“犀牛书”,算是JS界公认的“圣经”了.本书较厚(有1004页),读起来 ...

  10. linux_http协议

    什么是http协议? 超文本传输协议 最流行www服务,是http协议的实现 ssh,nfs,rsync客户端(Client)和服务端(Server),C/S架构,局域网内部用,胖客户端 http协议 ...