3622: 已经没有什么好害怕的了

题意:和我签订契约,成为魔法少女吧

真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求方案数


PS:洛谷月赛拿到了一个Modoka的挂件O(∩_∩)O哈哈~




总的方案数就是\(n!\),相当于一个做全排列

恰好多k个,那么就是a>b的有\(k=k+\frac{n-k}{2}\)个

恰好\(\rightarrow\)容斥

\[=\ \ge k个的配对方案数\ -\ \ge k+1个\ +\ \ge k+2个\ ...
\]

\(\ge i\)个就是先选出i对a>b的,剩下的任意排列

用个dp吧,先排序,求出\(g[i]\)表示\(a_i\)比\(g[i]\)个b大

\(f[i][j]\)表示前i个a选出j对a>b的方案数

\[ans= \sum_{i=k}^n (-1)^{i-k}f[n][i](n-i)!
\]



然后就一直WA...
原因是,你忘了spring吗,原因相同,我们算方案的时候重复了,每个k+i个配对的方案被考虑了 $\binom{k+i}{k}$ 次呀,应该只被考虑一次才对

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=2005, P=1e9+9;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, k, a[N], b[N];
ll f[N][N], fac[N], inv[N], facInv[N]; int g[N];
inline ll C(int n, int m) {return fac[n]*facInv[m]%P*facInv[n-m]%P;}
void dp() {
int now=0;
for(int i=1; i<=n; i++) {
while(now<n && a[i]>b[now+1]) now++;
g[i] = now;
}
for(int i=0; i<=n; i++) f[i][0]=1;
for(int i=1; i<=n; i++)
for(int j=1; j<=g[i]; j++) f[i][j] = (f[i-1][j] + f[i-1][j-1]*(g[i]-j+1)%P )%P;// printf("f %d %d %lld\n",i,j,f[i][j]);
}
int main() {
freopen("in","r",stdin);
n=read(); k=read(); if((n+k)&1) {puts("0"); return 0;}
k += (n-k)/2;
for(int i=1; i<=n; i++) a[i]=read();
for(int i=1; i<=n; i++) b[i]=read();
sort(a+1, a+1+n); sort(b+1, b+1+n);
inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
}
dp();
ll ans=0;
for(int i=k; i<=n; i++) ( ans += ( ((i-k)&1) ? -1 : 1 ) * fac[n-i] * f[n][i]%P * C(i, k)%P )%=P;
printf("%lld\n",(ans+P)%P);
}

BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]的更多相关文章

  1. bzoj 3622 已经没有什么好害怕的了 类似容斥,dp

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1213  Solved: 576[Submit][Status][ ...

  2. BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)

    今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...

  3. [BZOJ 3622]已经没有什么好害怕的了

    世萌萌王都拿到了,已经没有什么好害怕的了——    (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗?  (作大死) 这 ...

  4. ●BZOJ 3622 已经没有什么好害怕的了

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K ...

  5. bzoj 3622 已经没有什么好害怕的了——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...

  6. 解题:BZOJ 3622 已经没有什么好害怕的了·

    题面 用来学习二项式反演的题目 大于等于/小于等于 反演出 恰好等于 设前者为f(n),后者为g(n),则有$f(n)=\sum\limits_{i=0}^nC_n^ig(n)<->g(n ...

  7. BZOJ 3622: 已经没有什么好害怕的了(二项式反演)

    传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\) ...

  8. 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  9. 【BZOJ 3622】3622: 已经没有什么好害怕的了(DP+容斥原理)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 683  Solved: 328 Description Input ...

随机推荐

  1. Visual Studio 2017 安装后无法创建c++或MFC项目

    话话不多说,直接上图

  2. Spring框架学习笔记(7)——代理对象实现AOP

    AOP(面向切面编程) AOP(Aspect-Oriented Programming, 面向切面编程): 是一种新的方法论, 是对传统 OOP(Object-Oriented Programming ...

  3. docker运行dubbo-admin

    一:简介 dubbo-admin是dubbo框架的管理平台. 二: 创建继续镜像 Dockerfile FROM fangjipu/jdk8:8 RUN yum -y install epel-rel ...

  4. 数据结构与算法(c++)——双缓存队列

    "双缓存队列"是我在一次开发任务中针对特殊场景设计出来的结构.使用场景为:发送端持续向接收端发送数据包--并且不理会接收端是否完成业务逻辑.由于接收端在任何情况下停止响应即可能产生 ...

  5. Mac 下 搭建 svn 服务器

    Mac自带了svn服务端和客户端,所以只需要简单配置一下就可以使用. 1.创建svn repository svnadmin create /Users/gaohf/svn/repository 2. ...

  6. Centos6.9安装部署nginx服务器

    (一)依赖包安装 首先,gcc,pcre,zlib,openssl安装一边(可以用非-devel,但是嫌麻烦....用非-devel的看这个链接) yum  -y install gcc ------ ...

  7. Vuejs 安装与配置

    1.全局安装 vue-cli $ npm install --global vue-cli 2.创建一个基于 webpack 模板的新项目 $ vue init webpack my-project ...

  8. java乱码详解(java中byte与char的转换)

    转自:http://hi.baidu.com/%C6%F3%D2%B5%BC%D2%D4%B0/blog/item/825a4858d6248e8b810a181a.html   java byte与 ...

  9. POI--HSSFRow类

    用POI在工作表里作成一个行,可以用「HSSFRow」类,它的构造方法有三个. protected HSSFRow() protected HSSFRow(Workbook book, Sheet s ...

  10. Spring MVC CORS 跨域

    介绍 跨域CORS,全称是"跨域资源共享"(Cross-origin resource sharing) 当页面发出跨域请求时: 简单请求(先简单理解为正常的get/post吧): ...