http://poj.org/problem?id=2029

单点修改

矩阵查询

二维线段树

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; int w,h;
int x,y;
int xl,yl,xr,yr; #define N 101 int sum[N<<][N<<]; int cnt; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void changey(int kx,int ky,int l,int r)
{
if(l==r)
{
sum[kx][ky]++;
return;
}
int mid=l+r>>;
if(y<=mid) changey(kx,ky<<,l,mid);
else changey(kx,ky<<|,mid+,r);
sum[kx][ky]=sum[kx][ky<<]+sum[kx][ky<<|];
} void changex(int kx,int l,int r)
{
changey(kx,,,h);
if(l==r) return;
int mid=l+r>>;
if(x<=mid) changex(kx<<,l,mid);
else changex(kx<<|,mid+,r);
} void queryy(int kx,int ky,int l,int r)
{
if(l>=yl && r<=yr)
{
cnt+=sum[kx][ky];
return;
}
int mid=l+r>>;
if(yl<=mid) queryy(kx,ky<<,l,mid);
if(yr>mid) queryy(kx,ky<<|,mid+,r);
} void queryx(int kx,int l,int r)
{
if(l>=xl && r<=xr)
{
queryy(kx,,,h);
return;
}
int mid=l+r>>;
if(xl<=mid) queryx(kx<<,l,mid);
if(xr>mid) queryx(kx<<|,mid+,r);
} int main()
{
int n,s,t;
int ans;
while(scanf("%d",&n)!=EOF)
{
if(!n) return ;
memset(sum,,sizeof(sum));
read(w); read(h);
while(n--)
{
read(x); read(y);
changex(,,w);
}
read(s); read(t);
ans=;
for(int j=t;j<=h;++j)
for(int i=s;i<=w;++i)
{
xl=i-s+;
yl=j-t+;
xr=i;
yr=j;
cnt=;
queryx(,,w);
ans=max(ans,cnt);
}
cout<<ans<<'\n';
}
}
Get Many Persimmon Trees
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 4649   Accepted: 3025

Description

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format.


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.

The end of the input is indicated by a line that solely contains a zero.

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

poj2029 Get Many Persimmon Trees的更多相关文章

  1. POJ2029——Get Many Persimmon Trees

    Get Many Persimmon Trees Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3656   Accepte ...

  2. POJ-2029 Get Many Persimmon Trees(动态规划)

    Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3987 Accepted: 2 ...

  3. POJ2029:Get Many Persimmon Trees(二维树状数组)

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  4. POJ 2029 Get Many Persimmon Trees

    Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3243 Accepted: 2 ...

  5. (简单) POJ 2029 Get Many Persimmon Trees,暴力。

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  6. POJ 2029 Get Many Persimmon Trees (二维树状数组)

    Get Many Persimmon Trees Time Limit:1000MS    Memory Limit:30000KB    64bit IO Format:%I64d & %I ...

  7. xtu数据结构 B. Get Many Persimmon Trees

    B. Get Many Persimmon Trees Time Limit: 1000ms Memory Limit: 30000KB 64-bit integer IO format: %lld  ...

  8. POJ-2029 Get Many Persimmon Trees---二维树状数组+枚举

    题目链接: https://vjudge.net/problem/POJ-2029 题目大意: 有N棵树在一个n*m的田里,给出每颗树的坐标 用一个s*t的矩形去围,最多能围几棵树 思路: 用二维树状 ...

  9. POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)

    题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...

随机推荐

  1. java保留小数点后位数以及输出反转数字

    //方法一double b = 8.0/3.0; //与C语言不同,此处8.0和8有所区分 String format = String.format("%.2f,b"); //表 ...

  2. BZOJ2693jzptab

    简单般Bzoj2154: Crash的数字表格 Sol 增加了数据组数T<=10000 推到 \(ans=\sum_{d=1}^{N}d*\sum_{i=1}^{\lfloor\frac{N}{ ...

  3. JS中的闭包问题

    一.闭包:在函数外也可使用局部变量的特殊语法现象 全局变量 VS 局部变量: 全局变量:优点:可共享,可重用; 缺点:在任意位置都可随意修改——全局污染 局部变量:优点:安全 缺点:不可共享,不可重用 ...

  4. WCF使用纯代码的方式进行服务寄宿

    服务寄宿的目的是为了开启一个进程,为WCF服务提供一个运行的环境.通过为服务添加一个或者多个终结点,使之暴露给潜在的服务消费,服务消费者通过匹配的终结点对该服务进行调用,除去上面的两种寄宿方式,还可以 ...

  5. MySQL——delete 和 truncate 以及 drop 区别

    delete 和 truncate 以及 drop 区别 (个人理解,如有错误,请指出) delete < truncate < drop 删除方式: truncate  只删除数据.逐条 ...

  6. jar包和war包的介绍与区别

    在学习maven的过程中接触到了jar包和war包.之前在写小项目的时候真的遇到过war包,当时为了找到jar包,把war包 的后缀名改成了.rar的压缩文件,在里面提取出来jar包来用.其实jar包 ...

  7. spring cloud 专题二(spring cloud 入门搭建 之 微服务搭建和注册)

    一.前言 本文为spring cloud 微服务框架专题的第二篇,主要讲解如何快速搭建微服务以及如何注册. 本文理论不多,主要是傻瓜式的环境搭建,适合新手快速入门. 为了更好的懂得原理,大家可以下载& ...

  8. Angular组件——中间人模式

    设计一个组件时,组件应该是内聚的,应该不依赖外部已经存在的组件,要实现这种松耦合的组件要使用中间人模式. 一.中间人模式 该组件树中除了组件1以外,每个组件都有一个父组件可以扮演中间人的角色.顶级的中 ...

  9. 排序算法Java实现(冒泡排序)

    算法描述:对于给定的n个记录,从第一个记录开始依次对相邻的两个记录进行比较,当前面的记录大于后面的记录时,交换位置,进行一轮比较和交换后,n个记录中的最大记录将位于第n位:然后对前(n-1)个记录进行 ...

  10. poj 3664

    http://poj.org/problem?id=3664 进行两轮选举,第一轮选前n进入第二轮,第二轮选最高 #include<algorithm> #include<cstdi ...