k邻近算法(KNN)实例
一 k近邻算法原理
k近邻算法是一种基本分类和回归方法.
原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的
多数属于某个类,就把该输入实例分类到这个类中。

如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类。
- 如果K=3,绿色圆点的最邻近的3个点是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
- 如果K=5,绿色圆点的最邻近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。
参考一文搞懂k近邻(k-NN)算法(一) https://zhuanlan.zhihu.com/p/25994179
二 特点
优点:精度高(计算距离)、对异常值不敏感(单纯根据距离进行分类,会忽略特殊情况)、无数据输入假定
(不会对数据预先进行判定)。
缺点:时间复杂度高、空间复杂度高。
适用数据范围:数值型和标称型。
三 欧氏距离(Euclidean Distance)
欧氏距离是最常见的距离度量,衡量的是多维空间中各个点之间的绝对距离。公式如下:

四 sklearn库中使用k邻近算法
- 分类问题:from sklearn.neighbors import KNeighborsClassifier
- 回归问题:from sklearn.neighbors import KNeighborsRegressor
五 使用sklearn的K邻近简单实例
1 数据蓝蝴蝶
#导包
import numpy as np
import pandas as pd
from pandas import DataFrame,Series
from sklearn.neighbors import KNeighborsClassifier #k邻近算法模型 #使用datasets创建数据
import sklearn.datasets as datasets
iris = datasets.load_iris() feature = iris['data']
target = iris['target'] #将样本打乱,符合真实情况 np.random.seed(1)
np.random.shuffle(feature)
np.random.seed(1)
np.random.shuffle(target) #训练数据
x_train = feature[:140]
y_train = target[:140]
#测试数据
x_test = feature[-10:]
y_test =target[-10:] #实例化模型对象&训练模型
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(x_train,y_train)
knn.score(x_train,y_train) print('预测分类:',knn.predict(x_test))
print('真实分类:',y_test)
2 根据身高、体重、鞋子尺码,预测性别
#导包
import numpy as np
import pandas as pd
from pandas import DataFrame,Series #手动创建训练数据集
feature = np.array([[170,65,41],[166,55,38],[177,80,39],[179,80,43],[170,60,40],[170,60,38]])
target = np.array(['男','女','女','男','女','女']) from sklearn.neighbors import KNeighborsClassifier #k邻近算法模型 #实例k邻近模型,指定k值=3
knn = KNeighborsClassifier(n_neighbors=3) #训练数据
knn.fit(feature,target) #模型评分
knn.score(feature,target) #预测
knn.predict(np.array([[176,71,38]]))
3 手写数字识别
- 导包
import numpy as np
import pandas as pd
from pandas import DataFrame,Series
import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier
- 查看单一图片特征
img=plt.imread('data/0/0_2.bmp')
plt.imshow(img)

- 提炼样本数据
feature=[]
target=[]
for i in range(10):
for j in range(500):
img_arr=plt.imread(f'data/{i}/{i}_{j+1}.bmp')
feature.append(img_arr)
target.append(i) #构建特征数据格式
feature=np.array(feature)
target=np.array(target) feature.shape #(5000, 28, 28) #输入数据必须是二维数组,必须对feature降维
#(1)降维方式一:mean() (2)降维方式二:reshape()
feature=feature.reshape(5000,28*28) #将样本打乱 (必须使用多个seed)
np.random.seed(5)
np.random.shuffle(feature)
np.random.seed(5)
np.random.shuffle(target) #数据分割为训练数据和测试数据
x_train=feature[:4950]
y_train=target[:4950]
x_test=feature[-50:]
y_test=target[-50:]
- KNN模型建立和评分
#训练模型
knn.fit(x_train,y_train) #评分
knn.score(x_train,y_train) #预测
# knn.predict(x_test)
- 真实预测手写数字图片的一般流程
# 读取图片数据
num_img_arr=plt.imread('../../数字.jpg')
plt.imshow(num_img_arr)

#图片截取数字5
five_arr=num_img_arr[90:158,80:132]
plt.imshow(five_arr)

#降维操作(five数组是三维的,需要进行降维,舍弃第三个表示颜色的维度)
print(five_arr.shape) #(65, 56, 3)
five=five_arr.mean(axis=2)
print(five.shape) #(65, 56)
plt.imshow(five)

# 图片压缩为像素28*28
import scipy.ndimage as ndimage
five = ndimage.zoom(five,zoom = (28/68,28/52))
five.shape #(28, 28) # 压缩后的5的显示
plt.imshow(five)

# 把数据降维为feature 数据格式
five.reshape(1,28*28)
#预测
knn.predict(five.reshape(1,28*28))

下载源数据和代码:https://github.com/angleboygo/data_ansys
k邻近算法(KNN)实例的更多相关文章
- <机器学习实战>读书笔记--k邻近算法KNN
k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定 ...
- Python实现kNN(k邻近算法)
Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...
- 机器学习算法及代码实现–K邻近算法
机器学习算法及代码实现–K邻近算法 1.K邻近算法 将标注好类别的训练样本映射到X(选取的特征数)维的坐标系之中,同样将测试样本映射到X维的坐标系之中,选取距离该测试样本欧氏距离(两点间距离公式)最近 ...
- 《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...
- 监督学习——K邻近算法及数字识别实践
1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似( ...
- k近邻算法(KNN)
k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...
- kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)
一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...
- [机器学习实战] k邻近算法
1. k邻近算法原理: 存在一个样本数据集,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对 ...
- 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)
六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...
随机推荐
- Git----GitHub上传本地文件到git
1.首先在git上创建一个库,用来保存上传的本地文件 2.通过命令 git init 把这个目录变成git可以管理的仓库 git init 3.将远程git库克隆一份保存到本地 git clone x ...
- appium 提示报错“TypeError: 'unicode' object is not callable”的解决方式!
这里提到的这个报错,是小错误且容易经常会犯,有时需要特别注意使用. 目的要求结果:根据某个元素的id值获取到对应id的text值,并且将获取的text值与本身存在的text值做比较,查看text值是否 ...
- 禁用后退键 BackSpace
<script language="JavaScript">document.onkeydown = check;function check(e) { var ...
- a标签跳转之前加点击事件
①在html标签中出现提示 <a href="http://www.baidu.com" onclick="if(confirm('确认百度吗?')==false) ...
- UML用法及状态图,活动图介绍
统一建模语言UML(Unified Modeling Language)是非专利的第三代建模和规约语言.UML是一种开放的方法,用于说明.可视化.构建和编写一个正在开发的.面向对象的.软件密集系统的制 ...
- tomcat部署服务乱码问题
first:win+R -->输入regedit 打开注册列表HKEY_CURRENT_USER-->Console-->Tomcat-->CodePage修改成十进制6500 ...
- 关于Node.js中的路径问题
在前端学习过程中,涉及到路径的问题非常多,相对路径,绝对路径等.有时候明明觉得没问题,但是还是会出错.或者说线下没问题,但是到了线上就出现问题,因此弄懂路径问题,非常关键.我们需要知道为什么这个地方既 ...
- Python 转化成 PB 格式数据
一.概述 Protocol Buffers 是 Google 公司开发的一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,或者说序列化.它很适合做数据存储或 RPC 数据交换格式.可用于通讯 ...
- Spring-Data-JPA尝鲜:快速搭建CRUD+分页后台实例
前言:由于之前没有接触过Hibernate框架,但是最近看一些博客深深被它的"效率"所吸引,所以这就来跟大家一起就着一个简单的例子来尝尝Spring全家桶里自带的JPA的鲜 Spr ...
- 【我们一起写框架】MVVM的WPF框架(五)—完结篇
前言 这篇文章是WPF框架系列的最后一篇,在这里我想阐述一下我对框架设计的理解. 我对框架设计的理解是这样的: 框架设计不应该局限于任何一种设计模式,我们在设计框架时,应该将设计模式揉碎,再重组:这样 ...