在上文《Spark技术内幕:Stage划分及提交源码分析》中,我们分析了Stage的生成和提交。但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑,即需要按照顺序计算的Stage,Stage中包含了可以以partition为单位并行计算的Task。我们并没有分析Stage中得Task是如何生成并且最终提交到Executor中去的。

这就是本文的主题。

从org.apache.spark.scheduler.DAGScheduler#submitMissingTasks开始,分析Stage是如何生成TaskSet的。

如果一个Stage的所有的parent stage都已经计算完成或者存在于cache中,那么他会调用submitMissingTasks来提交该Stage所包含的Tasks。

org.apache.spark.scheduler.DAGScheduler#submitMissingTasks的计算流程如下:

  1. 首先得到RDD中需要计算的partition,对于Shuffle类型的stage,需要判断stage中是否缓存了该结果;对于Result类型的Final Stage,则判断计算Job中该partition是否已经计算完成。
  2. 序列化task的binary。Executor可以通过广播变量得到它。每个task运行的时候首先会反序列化。这样在不同的executor上运行的task是隔离的,不会相互影响。
  3. 为每个需要计算的partition生成一个task:对于Shuffle类型依赖的Stage,生成ShuffleMapTask类型的task;对于Result类型的Stage,生成一个ResultTask类型的task
  4. 确保Task是可以被序列化的。因为不同的cluster有不同的taskScheduler,在这里判断可以简化逻辑;保证TaskSet的task都是可以序列化的
  5. 通过TaskScheduler提交TaskSet。
TaskSet就是可以做pipeline的一组完全相同的task,每个task的处理逻辑完全相同,不同的是处理数据,每个task负责处理一个partition。pipeline,可以称为大数据处理的基石,只有数据进行pipeline处理,才能将其放到集群中去运行。对于一个task来说,它从数据源获得逻辑,然后按照拓扑顺序,顺序执行(实际上是调用rdd的compute)。
TaskSet是一个数据结构,存储了这一组task:
private[spark] class TaskSet(
val tasks: Array[Task[_]],
val stageId: Int,
val attempt: Int,
val priority: Int,
val properties: Properties) {
val id: String = stageId + "." + attempt override def toString: String = "TaskSet " + id
}
管理调度这个TaskSet的时org.apache.spark.scheduler.TaskSetManager,TaskSetManager会负责task的失败重试;跟踪每个task的执行状态;处理locality-aware的调用。
详细的调用堆栈如下:
  1. org.apache.spark.scheduler.TaskSchedulerImpl#submitTasks
  2. org.apache.spark.scheduler.SchedulableBuilder#addTaskSetManager
  3. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend#reviveOffers
  4. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#makeOffers
  5. org.apache.spark.scheduler.TaskSchedulerImpl#resourceOffers
  6. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#launchTasks
  7. org.apache.spark.executor.CoarseGrainedExecutorBackend.receiveWithLogging#launchTask
  8. org.apache.spark.executor.Executor#launchTask
首先看一下org.apache.spark.executor.Executor#launchTask:
  def launchTask(
context: ExecutorBackend, taskId: Long, taskName: String, serializedTask: ByteBuffer) {
val tr = new TaskRunner(context, taskId, taskName, serializedTask)
runningTasks.put(taskId, tr)
threadPool.execute(tr) // 开始在executor中运行
}
TaskRunner会从序列化的task中反序列化得到task,这个需要看 org.apache.spark.executor.Executor.TaskRunner#run 的实现:task.run(taskId.toInt)。而task.run的实现是:
 final def run(attemptId: Long): T = {
context = new TaskContext(stageId, partitionId, attemptId, runningLocally = false)
context.taskMetrics.hostname = Utils.localHostName()
taskThread = Thread.currentThread()
if (_killed) {
kill(interruptThread = false)
}
runTask(context)
}

对于原来提到的两种Task,即

  1. org.apache.spark.scheduler.ShuffleMapTask
  2. org.apache.spark.scheduler.ResultTask
分别实现了不同的runTask:
org.apache.spark.scheduler.ResultTask#runTask即顺序调用rdd的compute,通过rdd的拓扑顺序依次对partition进行计算:
  override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) metrics = Some(context.taskMetrics)
try {
func(context, rdd.iterator(partition, context))
} finally {
context.markTaskCompleted()
}
}
而org.apache.spark.scheduler.ShuffleMapTask#runTask则是写shuffle的结果,
  override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
//此处的taskBinary即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的 metrics = Some(context.taskMetrics)
var writer: ShuffleWriter[Any, Any] = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) // 将rdd计算的结果写入memory或者disk
return writer.stop(success = true).get
} catch {
case e: Exception =>
if (writer != null) {
writer.stop(success = false)
}
throw e
} finally {
context.markTaskCompleted()
}
}
这两个task都不要按照拓扑顺序调用rdd的compute来完成对partition的计算,不同的是ShuffleMapTask需要shuffle write,以供child stage读取shuffle的结果。 对于这两个task都用到的taskBinary,即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的。
通过上述几篇博文,实际上我们已经粗略的分析了从用户定义SparkContext开始,集群是如果为每个Application分配Executor的,回顾一下这个序列图:
还有就是用户触发某个action,集群是如何生成DAG,如果将DAG划分为可以成Stage,已经Stage是如何将这些可以pipeline执行的task提交到Executor去执行的。当然了,具体细节还是非常值得推敲的。以后的每个周末,都会奉上某个细节的实现。
休息了。明天又会开始忙碌的一周。

Spark技术内幕: Task向Executor提交的源码解析的更多相关文章

  1. Spark技术内幕: Task向Executor提交的源代码解析

    在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓 ...

  2. 6.Spark streaming技术内幕 : Job动态生成原理与源码解析

    原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/)   Spark streaming 程序的运行过程是将DStream的操作转化成RDD的操作, ...

  3. Celery 源码解析三: Task 对象的实现

    Task 的实现在 Celery 中你会发现有两处,一处位于 celery/app/task.py,这是第一个:第二个位于 celery/task/base.py 中,这是第二个.他们之间是有关系的, ...

  4. Spark技术内幕:Stage划分及提交源码分析

    http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...

  5. Spark技术内幕:Shuffle Map Task运算结果的处理

    Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对 ...

  6. Spark技术内幕:Client,Master和Worker 通信源码解析

    http://blog.csdn.net/anzhsoft/article/details/30802603 Spark的Cluster Manager可以有几种部署模式: Standlone Mes ...

  7. Spark技术内幕:Master的故障恢复

    Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...

  8. Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法

    上篇文章<  Spark 源码解析 : DAGScheduler中的DAG划分与提交 >介绍了DAGScheduler的Stage划分算法. 本文继续分析Stage被封装成TaskSet, ...

  9. [Spark內核] 第42课:Spark Broadcast内幕解密:Broadcast运行机制彻底解密、Broadcast源码解析、Broadcast最佳实践

    本课主题 Broadcast 运行原理图 Broadcast 源码解析 Broadcast 运行原理图 Broadcast 就是将数据从一个节点发送到其他的节点上; 例如 Driver 上有一张表,而 ...

随机推荐

  1. hihocoder 1391 树状数组

    #1391 : Countries 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 There are two antagonistic countries, countr ...

  2. 51Nod 1781 跑的比谁都快

    香港记者跑的比谁都快是众所周知的常识. 现在,香港记者站在一颗有 n 个点的树的根结点上(即1号点),编号为 i 的点拥有权值 a[i] ,数据保证每个点的编号都小于它任意孩子结点的别号. 我们假定这 ...

  3. bzoj3963[WF2011]MachineWorks cdq分治+斜率优化dp

    3963: [WF2011]MachineWorks Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 270  Solved: 80[Submit][S ...

  4. Mysq 索引优化

    MYSQL支持的索引类型 BTREE索引 特点: 通过引用以B+权的结构存储数据 能够加快数据的查询速度 更适合进行范围查找 应用: 全值匹配的查询 = 匹配最左前缀的查询 匹配列前缀查询 LIKE ...

  5. python day3_liaoxuefeng

    1.Python的循环有两种,一种是for...in循环,依次把list或tuple中的每个元素迭代出来,看例子: names = ['Michael', 'Bob', 'Tracy'] for na ...

  6. C语言程序设计第四次作业--选择结构(2)

    (一)改错题 输出三角形的面积和周长,输入三角形的三条边a.b.c,如果能构成一个三角形,输出面积area和周长perimeter(保留2位小数):否则,输出"These sides do ...

  7. StarSpace是用于高效学习实体向量的通用神经模型

    StarSpace是用于高效学习实体向量的通用神经模型,用于解决各种各样的问题: 学习单词,句子或文档级嵌入. 文本分类或任何其他标签任务. 信息检索:实体/文件或对象集合的排序,例如 排名网络文件. ...

  8. SVN提交时显示:Path is not a working copy directory

    说明你地址没有checkout啊 先checkout,才能add和commi. 要是在一个已有的项目出现这个错误,就是包含这个地址的文件夹没添加进去,去上一层再试一次. 总之,养成在项目根目录提交的习 ...

  9. JS的事件模型

    之前对事件模型还是比较清楚的,许多概念都清晰映射在脑海中.工作之后,一方面使用的局限性,二是习惯于用框架中的各种事件监听方式,简单即方便,久而久之,事件的一些概念开始淡出记忆中,就像我现在已经开始淡忘 ...

  10. 安装Leanote极客范的云笔记

    前言 在这个互联网知识呈爆炸增长的时代,作为一个程序员要掌握的知识越来越多,然再好的记性也不如烂笔头,有了笔记我们就是可以时常扒拉扒拉以前的知识,顺便可以整理下自己的知识体系. 如今市面上云笔记产品, ...