1. 概述相关

harris角点检测是一种特征提取的方法,而特征提取正是计算机视觉的一种重要手段。尽管它看起来很复杂,其实也是基于数学原理和简单的图像处理来实现的。

本文之前可以参看笔者写的几篇图像处理的文章,将会有助于更深入了解harris角点检测的实现。

  1. 图像的卷积(滤波)运算(一)——图像梯度
  2. 图像的卷积(滤波)运算(二)——高斯滤波
  3. 图像的膨胀与腐蚀——OpenCV与C++的具体实现

2. 原理详解

1) 算法思想

为了判断图像的角点,可以利用卷积窗口滑动的思想,让以该点为中心的窗口在附近滑动。如下图是所有描述角点文章的初始图例,它表征的正是这一特性:当滑动窗口在所有方向移动时,窗口内的像素灰度出现了较大的变化,就可能是角点。

2) 数学模型

根据上述的算法思想,可以构建数学模型,图像窗口平移[u,v]产生灰度变化E(u,v)为:



其中w(x,y)是一种加权函数,几乎所有的应用都把它设为高斯函数。由上述公式,进行推导如下:



最后得到的公式(6),在几何意义上表征的是一个椭圆。椭圆的长短轴分别沿着矩阵M的两个特征向量的方向,而两个与之对应的特征值分别是半长轴和半短轴的长度的平方的倒数。



那么根据矩阵M的两个特征值λ1和λ2,可以将图像上的像素点分类成直线、平面与角点:当λ1和λ2 都比较大,且近似相等时,可以认为是角点。如下图所示:

3) 优化推导

而上述表达不太方便使用,又定义了一个角点响应函数R,通过R的大小来判断像素是否为角点:



式中,detM为矩阵M的行列式,traceM为矩阵M的直迹。α为经常常数,取值范围为0.04~0.06。对于R公式,有推导如下:



可以知道,角点响应值R仍然表征了矩阵M两个特征值λ1和λ2,同样可以进行上述分类:当R为大数值正数的时候,表示为角点。如下图所示:

3. 具体实现

在OpenCV中,已经提供了Harris角点检测函数cornerHarris()。为了更好地理解Harris角点提取的原理,这里参考了网上代码,自己实现了其算法,不过也调用了OpenCV中一些基本函数。

根据上述原理,Harris图像角点检测算法的关键是计算M矩阵,M矩阵是图像I(x,y)的偏导数矩阵,也就是要先求出图像的梯度。

1) 详细步骤

1.计算图像I(x,y)在X,Y方向的梯度。在这里是通过卷积函数filter2D实现的,具体原理可以看(1)中提到的相关文章。

Mat gray;
imgSrc.convertTo(gray, CV_64F); Mat xKernel = (Mat_<double>(1, 3) << -1, 0, 1);
Mat yKernel = xKernel.t(); Mat Ix, Iy;
filter2D(gray, Ix, CV_64F, xKernel);
filter2D(gray, Iy, CV_64F, yKernel);

2.计算图像两个方向梯度的乘积。

Mat Ix2, Iy2, Ixy;
Ix2 = Ix.mul(Ix);
Iy2 = Iy.mul(Iy);
Ixy = Ix.mul(Iy);

3.对Ix2、Iy2和Ixy进行高斯滤波,生成矩阵M的元素A、B和C。

Mat gaussKernel = getGaussianKernel(7, 1);
filter2D(Ix2, Ix2, CV_64F, gaussKernel);
filter2D(Iy2, Iy2, CV_64F, gaussKernel);
filter2D(Ixy, Ixy, CV_64F, gaussKernel);

4.根据公式计算每个像素的Harris响应值R,得到图像对应的响应值矩阵。

Mat cornerStrength(gray.size(), gray.type());
for (int i = 0; i < gray.rows; i++)
{
for (int j = 0; j < gray.cols; j++)
{
double det_m = Ix2.at<double>(i, j) * Iy2.at<double>(i, j) - Ixy.at<double>(i, j) * Ixy.at<double>(i, j);
double trace_m = Ix2.at<double>(i, j) + Iy2.at<double>(i, j);
cornerStrength.at<double>(i, j) = det_m - alpha * trace_m *trace_m;
}
}

5.在3×3的邻域内进行非最大值抑制,找到局部最大值点,即为图像中的角点。在这里非最大值抑制是通过图像膨胀的实现的。比较膨胀前后的响应值矩阵,得到局部最大值。

//在3×3的邻域内进行非最大值抑制,找到局部最大值点,即为图像中的角点
double maxStrength;
minMaxLoc(cornerStrength, NULL, &maxStrength, NULL, NULL);
Mat dilated;
Mat localMax;
dilate(cornerStrength, dilated, Mat()); //膨胀
compare(cornerStrength, dilated, localMax, CMP_EQ); //比较保留最大值的点 //得到角点的位置
Mat cornerMap;
double qualityLevel = 0.01;
double thresh = qualityLevel * maxStrength;
cornerMap = cornerStrength > thresh; //小于阈值t的R置为零。
bitwise_and(cornerMap, localMax, cornerMap); //位与运算,有0则为0, 全为1则为1 imgDst = cornerMap.clone();

2) 最终实现

合并以上步骤,传入参数,最终的实现代码:

#include <iostream>
#include <algorithm>
#include <opencv2\opencv.hpp> using namespace cv;
using namespace std; void detectHarrisCorners(const Mat& imgSrc, Mat& imgDst, double alpha)
{
//
Mat gray;
imgSrc.convertTo(gray, CV_64F); //计算图像I(x,y)在X,Y方向的梯度
Mat xKernel = (Mat_<double>(1, 3) << -1, 0, 1);
Mat yKernel = xKernel.t(); Mat Ix, Iy;
filter2D(gray, Ix, CV_64F, xKernel);
filter2D(gray, Iy, CV_64F, yKernel); //计算图像两个方向梯度的乘积。
Mat Ix2, Iy2, Ixy;
Ix2 = Ix.mul(Ix);
Iy2 = Iy.mul(Iy);
Ixy = Ix.mul(Iy); //对Ix2、Iy2和Ixy进行高斯滤波,生成矩阵M的元素A、B和C。
Mat gaussKernel = getGaussianKernel(7, 1);
filter2D(Ix2, Ix2, CV_64F, gaussKernel);
filter2D(Iy2, Iy2, CV_64F, gaussKernel);
filter2D(Ixy, Ixy, CV_64F, gaussKernel); //根据公式计算每个像素的Harris响应值R,得到图像对应的响应值矩阵。
Mat cornerStrength(gray.size(), gray.type());
for (int i = 0; i < gray.rows; i++)
{
for (int j = 0; j < gray.cols; j++)
{
double det_m = Ix2.at<double>(i, j) * Iy2.at<double>(i, j) - Ixy.at<double>(i, j) * Ixy.at<double>(i, j);
double trace_m = Ix2.at<double>(i, j) + Iy2.at<double>(i, j);
cornerStrength.at<double>(i, j) = det_m - alpha * trace_m *trace_m;
}
} //在3×3的邻域内进行非最大值抑制,找到局部最大值点,即为图像中的角点
double maxStrength;
minMaxLoc(cornerStrength, NULL, &maxStrength, NULL, NULL);
Mat dilated;
Mat localMax;
dilate(cornerStrength, dilated, Mat()); //膨胀
compare(cornerStrength, dilated, localMax, CMP_EQ); //比较保留最大值的点 //得到角点的位置
Mat cornerMap;
double qualityLevel = 0.01;
double thresh = qualityLevel * maxStrength;
cornerMap = cornerStrength > thresh; //小于阈值t的R置为零。
bitwise_and(cornerMap, localMax, cornerMap); //位与运算,有0则为0, 全为1则为1 imgDst = cornerMap.clone();
} //在角点位置绘制标记
void drawCornerOnImage(Mat& image, const Mat&binary)
{
Mat_<uchar>::const_iterator it = binary.begin<uchar>();
Mat_<uchar>::const_iterator itd = binary.end<uchar>();
for (int i = 0; it != itd; it++, i++)
{
if (*it)
circle(image, Point(i%image.cols, i / image.cols), 3, Scalar(0, 255, 0), 1);
}
} int main()
{
//从文件中读取成灰度图像
const char* imagename = "D:\\Data\\imgDemo\\whdx.jpg";
Mat img = imread(imagename, IMREAD_GRAYSCALE);
if (img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
} //
Mat imgDst;
double alpha = 0.05;
detectHarrisCorners(img, imgDst, alpha); //在角点位置绘制标记
drawCornerOnImage(img, imgDst); //
imshow("Harris角点检测", img);
waitKey(); return 0;
}

其运行结果为:

4. 参考文献

  1. Harris角点
  2. Harris角点算法
  3. 矩阵特征值和椭圆长短轴的关系?-Eathen的回答

harris角点检测的简要总结的更多相关文章

  1. Harris角点检测算法优化

    Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上 ...

  2. Harris角点检测

    代码示例一: #include<opencv2/opencv.hpp> using namespace cv; int main(){ Mat src = imread(); imshow ...

  3. Harris 角点检测

    一 .Motivation 对于做图像处理的人来说,Harris角点检测肯定听过,1988年发表的文章"A combined corner and edge detector"描述 ...

  4. Harris角点检测算原理

    主要参考了:http://blog.csdn.net/yudingjun0611/article/details/7991601  Harris角点检测算子 本文将该文拷贝了过来,并做了一些数学方面的 ...

  5. Harris角点检测原理分析

    看到一篇从数学意义上讲解Harris角点检测很透彻的文章,转载自:http://blog.csdn.net/newthinker_wei/article/details/45603583 主要参考了: ...

  6. cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测

    参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...

  7. Opencv学习笔记------Harris角点检测

    image算法测试iteratoralgorithmfeatures 原创文章,转载请注明出处:http://blog.csdn.net/crzy_sparrow/article/details/73 ...

  8. OpenCV-Python:Harris角点检测与Shi-Tomasi角点检测

    一.Harris角点检测 原理: 角点特性:向任何方向移动变换都很大. Chris_Harris 和 Mike_Stephens 早在 1988 年的文章<A CombinedCorner an ...

  9. 第十一节、Harris角点检测原理(附源码)

    OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比 ...

随机推荐

  1. 『随笔』.Net 底层 数组[] 的 基本设计探秘 512 子数组

    static void Main(string[] args) { Console.ReadKey(); //初始化数组 不会立即开辟内存字节, 只有实际给数组赋值时 才会开辟内存 // //猜测数组 ...

  2. MyISAM加锁分析

    为什么加锁 你正在读着你喜欢的女孩递给你的信,看到一半的时候,她的好闺蜜过来瞄了一眼(假设她会隐身术,你看不到她),她想把"我很喜欢你"改成"我不喜欢你",刚把 ...

  3. 8天入门docker系列 —— 第五天 使用aspnetcore小案例熟悉容器互联和docker-compose一键部署

    这一篇继续完善webnotebook,如果你读过上一篇的内容,你应该知道怎么去挂载webnotebook日志和容器的远程访问,但是这些还远不够,webnotebook 总要和一些数据库打交道吧,比如说 ...

  4. kubernetes实践之四:深入理解控制器(workload)

    一.Pod与controllers的关系 controllers:在集群上管理和运行容器的对象 通过label-selector相关联 Pod通过控制器实现应用的运维,如伸缩,升级等 二.Deploy ...

  5. SQL Server 创建跨库查詢、修改、增加、删除

    一.通过SQL语句访问远程数据库   --OPENROWSET函数 使用OPENROWSET()是个不错的选择,也可以用做跨库查询包括增.删.改.查 下面就来介绍一下OPENROWSET函数的运用 包 ...

  6. SQLServer之集合

    集合的定义 集合是由一个或多个元素构成的整体,在SQLServer中的表就代表着事实集合,而其中的查询就是在集合的基础上生成的结果集.SQL Server的集合包括交集(INTERSECT).并集(U ...

  7. javascript 字符串转换数字的方法大总结

    方法主要有三种 转换函数.强制类型转换.利用js变量弱类型转换. 1. 转换函数: js提供了parseInt()和parseFloat()两个转换函数.前者把值转换成整数,后者把值转换成浮点数.只有 ...

  8. String、StringBuffer和StringBuilder类的区别

    Java提供了String.StringBuffer和StringBuilder类来封装字符串,并提供了一系列操作字符串对象的方法. 它们的相同点是都用来封装字符串:都实现了CharSequence接 ...

  9. 利用SQL Profiler 追踪数据库操作

    SQL Server 事件探查器 是一个界面,用于创建和管理跟踪并分析和重播跟踪结果. 这些事件保存在一个跟踪文件中,稍后试图诊断问题时,可以对该文件进行分析或用它来重播一系列特定的步骤. SQL S ...

  10. EF实体实现链接字符串加密

    1.加密解密方法 using System;using System.Security.Cryptography; using System.Text;namespace DBUtility{ /// ...