bzoj 1485 [HNOI2009]有趣的数列 卡特兰数
把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数
即为卡特兰数
求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实根本不用快速幂……
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 2000005
using namespace std;
int prime[N],minp[N],num[N],tot,n,p;
bool bo[N];
long long ans=1;
void getprime(){
for(int i=2;i<=2*n;i++){
if(!bo[i]){
prime[++tot]=i;
minp[i]=tot;
}
for(int j=1;j<=tot&&prime[j]*i<=2*n;j++){
bo[i*prime[j]]=1;
minp[i*prime[j]]=j;
if(i%prime[j]==0) break;
}
}
}
void add(int x,int y){
while(x!=1){
num[minp[x]]+=y;
x/=prime[minp[x]];
}
}
int main()
{
scanf("%d%d",&n,&p);
getprime();
for(int i=n+1;i<=2*n;i++)add(i,1);
for(int i=1;i<=n;i++)add(i,-1);
add(n+1,-1);
for(int i=1;i<=tot;i++)
if(num[i]){
while(num[i]){
if(num[i]&1)
ans=(ans*prime[i])%p;
prime[i]=(prime[i]*prime[i])%p;
num[i]>>=1;
}
}
printf("%d\n",ans);
}
bzoj 1485 [HNOI2009]有趣的数列 卡特兰数的更多相关文章
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- [HNOI2009]有趣的数列 卡特兰数
题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...
- 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数
这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...
- BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- [HNOI2009] 有趣的数列——卡特兰数与杨表
[HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)
题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...
- luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解
打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$. 对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可. code: #include < ...
- BZOJ 1485: [HNOI2009]有趣的数列
Description 求长度为 \(2n\) 的序列.要求 1. \(a_1<a_3<a_5<...<a_{2n-1}\) . 2. \(a_2<a_4<a_6& ...
随机推荐
- 容器(list集合)
--为什么使用集合而不使用数组?why ·集合和数组相似点:都可以存储多个对象,对外作为一个整体存在: ··数组的缺点:1.长度必须在初始化时指定,且固定不变: 2.数组采用连续存储空间,删除和添加元 ...
- 《MySQL必知必会》读书笔记_3
PS:这次的信息量有点大. 聚集不同值 SELECT AVG(DISTINCT prod_price) AS avg_price FROM products WHERE vend_id = 1003 ...
- 运行ant脚本(转载)
http://blog.csdn.net/linwei_1029/article/details/5809801 运行ANT脚本的步骤 1.右击我的电脑-->属性-->高级-->环境 ...
- oracle dmp数据导入
11.245.2.55 root:root su - pams --注意pams前面的空格 /cnaps2/pams/backup exp_pams_20141219.dmp drop tab ...
- 到底创建了几个String对象?
到底创建了几个String对象? 标签: 堆栈使用 对象创建 分类: 开发技术 关键字: java 面试题 string 创建几个对象 作者:臧圩人(zangweiren) 网址:http://zan ...
- 安装 Anaconda 的正确姿势
下面以 Anaconda2 安装为例, 说明如何更加流畅的使用 Conda Install Anaconda2 安装 Anaconda2(从清华源下载比较快) wget https://mirrors ...
- 10.API 接口自动化测试的基本原理
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica } p.p2 { margin: 0.0px 0.0px 0.0px 0. ...
- 大型进销存管理系统源码 家电业 电器类进销存 asp.net C#框架
系统详细信息点击查看 系统功能模块,系统管理: 部门管理 ,用户管理 ,角色管理 ,菜单管理 ,参数设置 商品管理: 类型管理 ,品牌管理 ,名称管理 ,型号管理 ,仓库管理 ,商家管理 ,单位管理 ...
- SOFA 源码分析 — 扩展机制
前言 我们在之前的文章中已经稍微了解过 SOFA 的扩展机制,我们也说过,一个好的框架,必然是易于扩展的.那么 SOFA 具体是怎么实现的呢? 一起来看看. 如何使用? 看官方的 demo: 1.定义 ...
- 并查集(union-find set)与Kruskal算法
并查集 并查集处理的是集合之间的关系,即‘union' , 'find' .在这种数据类型中,N个不同元素被分成若干个组,每组是一个集合,这种集合叫做分离集合.并查集支持查找一个元素所属的集合和两个元 ...