BZOJ_1798_[AHOI2009]维护序列_线段树

题意:老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

分析:线段树上要打两个标记。要注意下传的顺序。显然先乘后加和先加后乘是不一样的。我们发现如果是先加后乘的话更改子树值的式子里会出现除法。不妨规定任何时候都先乘后加。推出的式子即为

t[lson]=(t[lson]*mul[pos]+add[pos]*(mid-l+1))%p;

mul[lson]=(mul[lson]*mul[pos])%p;

add[lson]=(add[lson]*mul[pos]+add[pos])%p;

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define ls p<<1
#define rs p<<1|1
#define LL long long
#define N 100050
LL add[N<<2],t[N<<2],mul[N<<2],mod;
int a[N],n,m;
void bt(int l,int r,int p){
mul[p]=1;
if(l==r){
scanf("%lld",&t[p]);return ;
}
int mid=l+r>>1;
bt(l,mid,ls);bt(mid+1,r,rs);
t[p]=(t[ls]+t[rs])%mod;
}
void pud(int l,int r,int p){
int mid=l+r>>1;
if(add[p]==0&&mul[p]==1)return ;
t[ls]=(t[ls]*mul[p]+add[p]*(mid-l+1))%mod;
t[rs]=(t[rs]*mul[p]+add[p]*(r-mid))%mod;
mul[ls]=mul[ls]*mul[p]%mod;
mul[rs]=mul[rs]*mul[p]%mod;
add[ls]=(add[ls]*mul[p]+add[p])%mod;
add[rs]=(add[rs]*mul[p]+add[p])%mod;
mul[p]=1;add[p]=0;
}
void upad(int l,int r,int x,int y,int c,int p){
if(x<=l&&y>=r){
add[p]=(add[p]+c)%mod;
t[p]+=1ll*(r-l+1)*c;t[p]%=mod;
return ;
}
int mid=l+r>>1;
pud(l,r,p);
if(x<=mid)upad(l,mid,x,y,c,ls);
if(y>mid)upad(mid+1,r,x,y,c,rs);
t[p]=(t[ls]+t[rs])%mod;
}
void upmu(int l,int r,int x,int y,int c,int p){
if(x<=l&&y>=r){
mul[p]=mul[p]*c%mod;
add[p]=add[p]*c%mod;
t[p]=t[p]*c%mod;
return ;
}
pud(l,r,p);
int mid=l+r>>1;
if(x<=mid)upmu(l,mid,x,y,c,ls);
if(y>mid)upmu(mid+1,r,x,y,c,rs);
t[p]=(t[ls]+t[rs])%mod;
}
LL query(int l,int r,int x,int y,int p){
if(x<=l&&y>=r)return t[p];
int mid=l+r>>1;
LL re=0;
pud(l,r,p);
if(x<=mid)re=(re+query(l,mid,x,y,ls))%mod;
if(y>mid)re=(re+query(mid+1,r,x,y,rs))%mod;
return re;
}
int main(){
scanf("%d%lld",&n,&mod);
bt(1,n,1);
scanf("%d",&m);
int op,x,y,z;
for(int i=1;i<=m;i++){
scanf("%d",&op);
if(op==1){
scanf("%d%d%d",&x,&y,&z);
upmu(1,n,x,y,z,1);
}else if(op==2){
scanf("%d%d%d",&x,&y,&z);
upad(1,n,x,y,z,1);
}else{
scanf("%d%d",&x,&y);
printf("%lld\n",query(1,n,x,y,1));
}
}
}

BZOJ_1798_[AHOI2009]维护序列_线段树的更多相关文章

  1. 洛谷P2023 [AHOI2009]维护序列(线段树区间更新,区间查询)

    洛谷P2023 [AHOI2009]维护序列 区间修改 当我们要修改一个区间时,要保证 \(ax+b\) 的形式,即先乘后加的形式.当将区间乘以一个数 \(k\) 时,原来的区间和为 \(ax+b\) ...

  2. 1798. [AHOI2009]维护序列【线段树】

    Description 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2 ...

  3. 【题解】洛谷P2023 [AHOI2009] 维护序列(线段树)

    洛谷P2023:https://www.luogu.org/problemnew/show/P2023 思路 需要2个Lazy-Tag 一个表示加的 一个表示乘的 需要先计算乘法 再计算加法 来自你谷 ...

  4. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  6. Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...

  7. BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 5504  Solved: 1937[Submit ...

  8. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  9. 【BZOJ】1798: [Ahoi2009]Seq 维护序列seq 线段树多标记(区间加+区间乘)

    [题意]给定序列,支持区间加和区间乘,查询区间和取模.n<=10^5. [算法]线段树 [题解]线段树多重标记要考虑标记与标记之间的相互影响. 对于sum*b+a,+c直接加上即可. *c后就是 ...

随机推荐

  1. 智能合约最佳实践 之 Solidity 编码规范

    每一门语言都有其相应的编码规范, Solidity 也一样, 下面官方推荐的规范及我的总结,供大家参考,希望可以帮助大家写出更好规范的智能合约. 命名规范 避免使用 小写的l,大写的I,大写的O 应该 ...

  2. JS基础:基于原型的对象系统

    简介: 仅从设计模式的角度讲,如果我们想要创建一个对象,一种方法是先指定它的类型,然后通过这个类来创建对象,例如传统的面向对象编程语言 "C++"."Java" ...

  3. JVM terminated. Exit code=8096

    http://www-01.ibm.com/support/docview.wss?uid=swg21303648 Technote (troubleshooting) Problem(Abstrac ...

  4. javascript初学者必须注意的7个细节

    [IT168 技术]每种语言都有它特别的地方,对于JavaScript来说,使用var就可以声明任意类型的变量,这门脚本语言看起来很简单,然而想要写出优雅的代码却是需要不断积累经验的.本文列举Java ...

  5. 完整的WebRTC调用序列图

    说在前面的话:此图出自Rea-Time Communication with WebRTC: https://book.douban.com/subject/25849712/ 的第五章.

  6. MySQL的日志(二):事务日志

    本文目录:1.redo log 1.1 redo log和二进制日志的区别 1.2 redo log的基本概念 1.3 日志块(log block) 1.4 log group和redo log fi ...

  7. 前端工程化(二)---webpack配置

    导航 前端工程化(一)---工程基础目录搭建 前端工程化(二)---webpack配置 前端工程化(三)---Vue的开发模式 前端工程化(四)---helloWord 继续上一遍的配置,本节主要记录 ...

  8. TCP分组交换详解

    TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 位码即tcp标志位,有6种标 ...

  9. python3+requests:使用类封装接口测试脚本

    前言:接口测试用例较多,我们不可能每个用例都写一次requests,get或者requests,post等,所以对共用方法要进行封装处理 第一次修改:将get请求和post请求单独定义出来,使用过程中 ...

  10. 根据appId匹配项目名称

    有时候后端返回的接口中也许没有我们想要的字段,可以通过下面的方式拿到想要的字段 代码如下: //获取项目名称 getBizName(appId) { let proNameList = this.$s ...