http://acm.hdu.edu.cn/showproblem.php?pid=1878

欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 14317    Accepted Submission(s): 5423

Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
 
Sample Output
1
0

分析:

  1. 首先,判断是否构成连通图,用并查集实现
  2. 判断每个节点的度数是否为偶数(0除外)
#include "cstdio"
const int N=+;
int father[N],degree[N];
void inti(int n)
{
for(int i=;i<n;i++)
{
father[i]=i;
degree[i]=;
}
}
int findFather(int x)
{
int a=x;
while(father[x]!=x)
x=father[x];
while(father[a]!=a)
{
int z=a;
a=father[a];
father[z]=x;
}
return x;
}
void Union(int x,int y)
{
int faA=findFather(x);
int faB=findFather(y);
if(faA!=faB)
father[faA]=faB;
}
int main()
{
int n,m;
while(~scanf("%d",&n)&&n)
{
inti(n);
scanf("%d",&m);
int u,v;
while(m--){
scanf("%d%d",&u,&v);
degree[u-]++;///求度数
degree[v-]++;
Union(u-,v-);
}
int cnt1=,cnt2=;
for(int i=;i<n;i++)
{
if(father[i]==i)///连通图
cnt1++;
if(degree[i]==||degree[i]%!=)///所有节点度数为偶数
cnt2++;
}
if(cnt1==&&cnt2==)
printf("1\n");
else
printf("0\n");
}
return ;
}

如果不去做,永远不可能!

HDU1878 欧拉回路---(并查集+图论性质)的更多相关文章

  1. HDU-1878 欧拉回路(并查集,欧拉回路性质)

    欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  2. POJ 2513 Colored Sticks (欧拉回路+并查集+字典树)

    题目链接 Description You are given a bunch of wooden sticks. Each endpoint of each stick is colored with ...

  3. K - 欧拉回路(并查集)

    点击打开链接 K - 欧拉回路 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试用例.每个测试用例的第 ...

  4. HDU 1116 Play on Words(欧拉回路+并查集)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1116 Play on Words Time Limit: 10000/5000 MS (Java/Ot ...

  5. ACM: FZU 2112 Tickets - 欧拉回路 - 并查集

     FZU 2112 Tickets Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u P ...

  6. HDU 1116 || POJ 1386 || ZOJ 2016 Play on Words (欧拉回路+并查集)

    题目链接 题意 : 有很多门,每个门上有很多磁盘,每个盘上一个单词,必须重新排列磁盘使得每个单词的第一个字母与前一个单词的最后一个字母相同.给你一组单词问能不能排成上述形式. 思路 :把每个单词看成有 ...

  7. POJ2513——Colored Sticks(Trie树+欧拉回路+并查集)

    Colored Sticks DescriptionYou are given a bunch of wooden sticks. Each endpoint of each stick is col ...

  8. nyist 42 一笔画 (欧拉回路 + 并查集)

    nyoj42 分析: 若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径. 若该路径是一个圈,则称为欧拉(Euler)回路. 具有欧拉回路的图称为欧拉图(简称E图).具有欧拉路 ...

  9. UVA - 10129 Play on Words(欧拉回路+并查集)

    2.解题思路:本题利用欧拉回路存在条件解决.可以将所有的单词看做边,26个字母看做端点,那么本题其实就是问是否存在一条路径,可以到达所有出现过的字符端点.由于本题还要求了两个单词拼在一起的条件是前一个 ...

随机推荐

  1. iOS开发中常见的一些异常

    iOS开发中常见的异常包括以下几种NSInvalidArgumentExceptionNSRangeExceptionNSGenericExceptionNSInternallnconsistency ...

  2. jmeter结合autoit操作windows程序

    需求: 模拟操作下图软件的控件,如拨号和挂机. 1. 下载安装好autoit后,打开finder tool,使用查找工具定位到要模拟操作的控件上,如图: 2.在finder tool中的control ...

  3. ACE_Select_Reactor_T 介绍 (2)

    本章目录 ACE_Select_Reactor_T 介绍 类继承图 类协作图 类主要成员变量 事件处理函数调用图 事件处理主流程 handle_events 函数流程 handle_events_i ...

  4. Java并发基础--线程通信

    java中实现线程通信的四种方式 1.synchronized同步 多个线程之间可以借助synchronized关键字来进行间接通信,本质上是通过共享对象进行通信.如下: public class S ...

  5. POJ 2186 Popular Cows(强联通+缩点)

    Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...

  6. C++STL——map

    一.相关定义 map 关联容器,存储相结合形成的一个关键值和映射值的元素 提供一对一(第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可以称为该关键字的值)的数据处理能力 map对象是模 ...

  7. C - 安装雷达

    C - 安装雷达 Time Limit: 1000/1000MS (C++/Others) Memory Limit: 65536/65536KB (C++/Others) Problem Descr ...

  8. 【UML】活动图介绍

    1.活动图,即Activity Diagram,是UML中用于对系统的动态行为建模的一种常用工具,它描述活动的顺序,展现从一种活动到另一种活动的控制流.其本质上是一种流程图,着重表现从一个活动到另一个 ...

  9. MYSQL 服务无法启动,错误日志:InnoDB: .\ibdata1 must be writable

    这几天安装MYSQL 5.7版本的时候,出现了服务无法启动的问题,尝试了各种修改配置文件my.ini的方法都不行,查看到错误日志,一般错误日志在C:\Program Files\MySQL\MySQL ...

  10. BZOJ4602 SDOI2016齿轮(搜索)

    dfs一遍给每个齿轮随便标个值看是否矛盾就行了. #include<iostream> #include<cstdio> #include<cmath> #incl ...