剑指offer--20.矩形覆盖
链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6
来源:牛客网 @DanielLea
思路分析:
3基础上增加了"| | ="、“= =”。
2多了“=”。其实这就是关键点所在...因为,只要2*1或1*2有相同的两个时,就会组成2*2形式,于是就又可以变形了。
*
3方块
覆
盖3*n区域:f(n) = f(n-1) + f(n - 3), (n > 3)
1
*4
方块
覆
盖4*n区域:f(n) = f(n-1) + f(n - 4),(n > 4)
------------------------------------------------------------------------------------------------------------------
题目描述
class Solution {
public:
int rectCover(int number) {
if(number < ) return ;
else if(number == || number == ) return number;
else return rectCover(number-) + rectCover(number-);
}
};
---------
剑指offer--20.矩形覆盖的更多相关文章
- 剑指Offer:矩形覆盖【N1】
剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...
- 剑指OFFER之矩形覆盖(九度OJ1390)
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...
- 剑指Offer 10. 矩形覆盖 (递归)
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...
- 【剑指offer】矩形覆盖
一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:
- 剑指offer 10矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...
- 剑指offer:矩形覆盖
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...
- [剑指Offer] 10.矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...
- 《剑指offer》矩形覆盖
一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...
- 【牛客网-剑指offer】矩形覆盖
题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...
- 剑指Offer之矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...
随机推荐
- 【WEB HTTP】缓存
1. HTTP并不支持兄弟缓存,所以人们通过一些协议对HTTP进行了扩展,比如因特网缓存协议(Internet Cache Protocol, ICP)和超文本缓存协议(HyperText Cachi ...
- hive与hbase
作者:有点文链接:https://www.zhihu.com/question/21677041/answer/185664626来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- KVM虚拟化虚拟机支持虚拟化
一.开启的时候需要关闭所有虚拟机: 首先检查 KVM host(宿主机/母机)上的kvm_intel模块是否打开了嵌套虚拟机功能(默认是开启的): 1.modinfo kvm_intel | grep ...
- Linux文件系统管理 parted分区命令
概述 parted 命令是可以在命令行直接分区和格式化的,不过 parted 交互模式才是更加常用的命令方式. parted命令 进入交互模式命令如下: [root@localhost ~]# par ...
- [POI2008]账本BBB
题目 BZOJ 做法 明确: \(~~~1.\)为了达到目标分数所取反的次数是固定的 \(~~~2.\)为了满足前缀非负,得增加取反和滚动次数 滚动的次数可以枚举,增加的取反可以通过最小前缀和得到 滚 ...
- JS以指定格式获取当前日期
//获取当前时间,格式YYYY-MM-DD function getNowFormatDate() { var date = new Date(); var seperator1 = "-& ...
- Eclipse开发快捷键精选
1.alt+?或alt+/:自动补全代码或者提示代码2.ctrl+o:快速outline视图3.ctrl+shift+r:打开资源列表4.ctrl+shift+f:格式化代码5.ctrl+e:快速转换 ...
- LeetCode——palindrome-partitioning
Question Given a string s, partition s such that every substring of the partition is a palindrome. R ...
- .on事件绑定多少次就会执行多少次
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- QT 利用ListWidget 和 StackedLayout 配合实现 分页 选项
1. 如图, 左边为listwidget,右边为StackedLayout, 通过listwidget的不同选项,可以使右边的不同页显示出来. 2. dialog.h #ifndef DIALOG_H ...