剑指offer--20.矩形覆盖
链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6
来源:牛客网 @DanielLea
思路分析:
3基础上增加了"| | ="、“= =”。
2多了“=”。其实这就是关键点所在...因为,只要2*1或1*2有相同的两个时,就会组成2*2形式,于是就又可以变形了。
*
3方块
覆
盖3*n区域:f(n) = f(n-1) + f(n - 3), (n > 3)
1
*4
方块
覆
盖4*n区域:f(n) = f(n-1) + f(n - 4),(n > 4)
------------------------------------------------------------------------------------------------------------------
题目描述
class Solution {
public:
int rectCover(int number) {
if(number < ) return ;
else if(number == || number == ) return number;
else return rectCover(number-) + rectCover(number-);
}
};
---------
剑指offer--20.矩形覆盖的更多相关文章
- 剑指Offer:矩形覆盖【N1】
剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...
- 剑指OFFER之矩形覆盖(九度OJ1390)
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...
- 剑指Offer 10. 矩形覆盖 (递归)
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...
- 【剑指offer】矩形覆盖
一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:
- 剑指offer 10矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...
- 剑指offer:矩形覆盖
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...
- [剑指Offer] 10.矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...
- 《剑指offer》矩形覆盖
一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...
- 【牛客网-剑指offer】矩形覆盖
题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...
- 剑指Offer之矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...
随机推荐
- F110操作手册-自动付款
SAP 系统 F110系统操作手册 目 录 1.自动付款... 3 1.自动付款 事务代号: F110 菜单路径: 会计 →财 ...
- LeetCode:二进制求和【67】
LeetCode:二进制求和[67] 题目描述 给定两个二进制字符串,返回他们的和(用二进制表示). 输入为非空字符串且只包含数字 1 和 0. 示例 1: 输入: a = "11" ...
- Centos----本地yum源制作
本地YUM源制作 1. YUM相关概念 1.1. 什么是YUM YUM(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的S ...
- com.android.dex.DexIndexOverflowException: Cannot merge new index 66299 into a non-jumbo instruction
打包时控制台输出: Error:Execution failed for task ':app:transformClassesWithDexForAll32Release'. > com.an ...
- Eclipse Validating缓慢的优化
使用Eclipse的人基本都有这种情况,如图: 各种等待有木有,各种崩溃啊有木有,反正我是觉得挺烦的,但是也不知道是干嘛的,如果取消了,造成程序出问题,就是给自己找麻烦,我知道这个事情肯定是可以关的, ...
- linux下java unrecognized class file version错误的解决
root@Mr javaPC]# java HelloWorldException in thread “main” java.lang.ClassFormatError: HelloWorld (u ...
- 泛型学习第一天:List与IList的区别 (三)
已经有很多人讨论过IList和List的区别,恩,我也赞同其中的一些观点,其实他们二者也是有优有劣的,看你着重用在哪个方面,先贴一下我赞同的意见,基本上也都是网友们总结的. 首先IList 泛型接口是 ...
- div css 练习1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- numpy中的matrix与array的区别
Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array ...
- KVM Best practice
使用block设备来避免额外的software layers. Best practices: Asynchronous I/O model for KVM guests 尽管KVM supports ...