链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6
来源:牛客网 @DanielLea

思路分析:

痛定思痛,还是不能够贪小便宜。用归纳法归纳如下,
(1)当 n < 1时,显然不需要用2*1块覆盖,按照题目提示应该返回 0。
(2)当 n = 1时,只存在一种情况。

(3)当 n = 2时,存在两种情况。

(4)当 n = 3时,明显感觉到如果没有章法,思维难度比之前提升挺多的。

... 尝试归纳,本质上 n 覆盖方法种类都是对 n - 1 时的扩展。
可以明确,n 时必定有 n-1时原来方式与2*1的方块结合。也就是说, f(n) = f(n-1) + ?(暂时无法判断)。
(4)如果我们现在归纳 n = 4,应该是什么形式?
4.1)保持原来n = 3时内容,并扩展一个 2*1 方块,形式分别为 “| | | |”、“= | |”、“| = |”
4.2)新增加的2*1 方块与临近的2*1方块组成 2*2结构,然后可以变形成 “=”。于是 n = 4在原来n =
3基础上增加了"| | ="、“= =”。
再自己看看这多出来的两种形式,是不是只比n =
2多了“=”。其实这就是关键点所在...因为,只要2*1或1*2有相同的两个时,就会组成2*2形式,于是就又可以变形了。
所以,自然而然可以得出规律: f(n) = f(n-1) + f(n-2), (n > 2)。
如果看了这一套理论还存在疑惑。可以尝试将题目改成1*3方块覆盖3*n、1*4方块覆盖4*n。
相应的结论应该是:
(1)1
*
3方块

盖3*n区域:f(n) = f(n-1) + f(n - 3), (n > 3)
(2)
1
*4
方块

盖4*n区域:f(n) = f(n-1) + f(n - 4),(n > 4)
更一般的结论,如果用1*m的方块覆盖m*n区域,递推关系式为f(n) = f(n-1) + f(n-m),(n > m)。

------------------------------------------------------------------------------------------------------------------

时间限制:1秒 空间限制:32768K 热度指数:270399

题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
 
class Solution {
public:
int rectCover(int number) {
if(number < ) return ;
else if(number == || number == ) return number;
else return rectCover(number-) + rectCover(number-);
}
};

---------

剑指offer--20.矩形覆盖的更多相关文章

  1. 剑指Offer:矩形覆盖【N1】

    剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...

  2. 剑指OFFER之矩形覆盖(九度OJ1390)

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...

  3. 剑指Offer 10. 矩形覆盖 (递归)

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...

  4. 【剑指offer】矩形覆盖

    一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:     

  5. 剑指offer 10矩形覆盖

    我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...

  6. 剑指offer:矩形覆盖

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...

  7. [剑指Offer] 10.矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...

  8. 《剑指offer》矩形覆盖

    一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...

  9. 【牛客网-剑指offer】矩形覆盖

    题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...

  10. 剑指Offer之矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...

随机推荐

  1. 系统性能模块psutil

    psutil是一个跨平台库,能够轻松实现获取系统运行的进程和系统利用率(包括cpu.内存.磁盘.网络等)信息.它主要用于系统监控,分析和限制系统资源及进程的管理.它实现了同等命令行工具提供的功能,如p ...

  2. bolg项目

    写代码要尽可能的捕获异常 模板的路径可以直接放到TEMPLATES里面的DIRS当中,TEMPLATE_DIRS可以取消掉 设置static静态文件STATICFILES_DIRS里面,这是一个元组 ...

  3. Linux:Ubuntu16.04下创建Wifi热点

    Linux:Ubuntu16.04下创建Wifi热点说明 1.Ubuntu16.04里面可以直接创建热点,而不用像以前的版本,还要其他辅助工具. 2.本篇文章参考自编程人生 具体步骤如下: 1. 点击 ...

  4. MySQL 数据库怎样把一个表的数据插入到另一个表

         web开发中,我们经常需要将一个表的数据插入到另外一个表,有时还需要指定导入字段,设置只需要导入目标表中不存在的记录,虽然这些都可以在程序中拆分成简单sql来实现,但是用一个sql的话,会节 ...

  5. Django---Blog系统开发之建库

    数据库配置: #sqlite3数据库配置: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os. ...

  6. 键盘keyCode

    字母和数字键的键码值(keyCode)   按键 键码 按键 键码 按键 键码 按键 键码 A 65 J 74 S 83 1 49 B 66 K 75 T 84 2 50 C 67 L 76 U 85 ...

  7. com.android.dex.DexIndexOverflowException: Cannot merge new index 66299 into a non-jumbo instruction

    打包时控制台输出: Error:Execution failed for task ':app:transformClassesWithDexForAll32Release'. > com.an ...

  8. 跨平台移动开发 Android使用JPush推送消息

    二话不说,直接上图,看效果 第一步在官网下载 Android Push SDK https://www.jpush.cn/sdk/android 第二步 创建注册帐号,应用 第三步  下载应用,导入l ...

  9. Druid数据库连接池的一般使用

    据说:阿里的Druid这款产品,是目前最好用的数据库池产品,下面就来看下怎么在我们项目中去使用它吧. 项目背景:使用的是SpringMvc+Spring+mybatis 在ssm框架里面使用数据连接池 ...

  10. /var/spool/clientmqueue 爆满问题

    当你使用简单的sendmail发邮件的时候,或者系统默认要发一些邮件(比如cron发的邮件)的时候,首先会把邮件拷贝到这个目录里,然后等待MTA(mail transfer agent) 来处理,MT ...