有攻击牌和强化牌各 $n$ 张,强化牌可以让之后所有攻击牌攻击力乘一个大于 $1$ 的系数,攻击牌可以造成伤害

求所有“抽出 $m$ 张然后打 $k$ 张”能造成的伤害之和

$k,m,2n \leq 3000$

sol:

冷静一下,发现强化牌肯定要打完,因为一张攻击力最大的攻击牌就相当于没强化的强化牌

讨论一下抽到了几张强化牌

假设抽到了 $i$ 张强化牌,$k-i$ 张攻击牌

如果 $i < k$ 直接强化全打然后攻击就完事了,如果 $i \geq k$ 的话打最大的 $k-1$ 张强化和最大的一张攻击

由此可以 $dp$

设 $f_i$ 为 $i$ 张强化牌最多能扩的倍数,枚举当前抽到的强化牌 $j$,则

当 $i < k$ 时,$f_i = f_{i-1} + w_j \times f_j$

else, $f_i = f_i+f_{i-1}$

设 $g_i$ 为选了 $i$ 张攻击牌不翻倍的最大攻击力,枚举当前抽到的攻击牌 $j$,则

$g_i = g_{i-1} + C_{i-1}^{j-1} \times w_j + c$ (当 $i \leq (m-k+1)$ 时 $c=0$,$i>(m-k+1)$ 时 $c=g_{i-1}$)

答案就是 $\sum\limits_{i=0}^m f_i \times g_{m-i}$

第一个转移显然是按倍数从大到小排序,第二个需要把攻击力从小到大排序,

第一个转移,不管是怎么转移过来的,每张强化牌的贡献都是一样的,

第二个算每张牌贡献的时候,$c$ 标注了这张攻击牌打完之后还能不能再打别的攻击牌,如果不能打就是 $0$,能打的话要求跟他一起打的尽量大,这样转移能保证我们打的是一段尽量大的攻击牌

#include<bits/stdc++.h>
#define LL long long
#define rep(i,s,t) for(register int i = (s),i##end = (t); i <= i##end; ++i)
#define dwn(i,s,t) for(register int i = (s),i##end = (t); i >= i##end; --i)
using namespace std; const int mod = ;
inline int read()
{
int x=,f=;char ch;
for(ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')f=-f;
for(;isdigit(ch);ch=getchar())x=*x+ch-'';
return x*f;
}
bool cmp(int a, int b) { return a > b; }
LL fac[], inv[];
int T, n, m, k, ans, f[], g[], w[];
LL C(int n, int m) { return fac[n] * inv[m] % mod * inv[n - m] % mod; }
int main() {
fac[] = fac[] = inv[] = inv[] = ;
for (int i = ; i <= ; i++) {
fac[i] = fac[i - ] * i % mod;
inv[i] = ((LL)mod - mod / i) * inv[mod % i] % mod;
}
for (int i = ; i <= ; i++) inv[i] = inv[i] * inv[i - ] % mod;
T = read();
while (T--) {
n = read(), m = read(), k = read();
for (int i = ; i <= n; i++) w[i] = read();
sort(w + , w + n + , cmp);
for (int i = ; i <= max(n, m); i++) f[i] = ;
f[] = ;
for (int i = ; i <= n; i++)
for (int j = min(m, i); j >= ; j--)
if (j <= k - )
f[j] = (f[j] + (LL)f[j - ] * w[i] % mod) % mod;
else
f[j] = (f[j] + f[j - ]) % mod;
for (int i = ; i <= n; i++) w[i] = read();
sort(w + , w + n + );
for (int i = ; i <= max(n, m); i++) g[i] = ;
for (int i = ; i <= n; i++)
for (int j = min(m, i); j >= ; j--)
if (j <= m - (k - ))
g[j] = (g[j] + (LL)C(i - , j - ) * w[i] % mod) % mod;
else
g[j] = ((g[j] + g[j - ]) % mod + (LL)C(i - , j - ) * w[i] % mod) % mod;
ans = ;
for (int i = ; i <= m; i++) ans = (ans + (LL)f[i] * g[m - i] % mod) % mod;
printf("%d\n", ans);
}
return ;
}

当然比赛不会真的这么写...老老实实用两维状态前缀和优化,考后自然要选择好一点的写法

PKUSC2018 Slay The Spire的更多相关文章

  1. BZOJ 5467 Slay the Spire

    BZOJ 5467 Slay the Spire 我的概率基础也太差了.jpg 大概就是这样,因为强化牌至少翻倍,所以打出的牌必定是全部的强化牌或者$k-1$个强化牌,然后剩余的机会打出最大的几个攻击 ...

  2. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  3. loj #2538. 「PKUWC2018」Slay the Spire

    $ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...

  4. BZOJ.5467.[PKUWC2018]Slay the Spire(DP)

    LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用 ...

  5. [PKUWC2018] Slay the spire

    Description 现在有 \(n\) 张强化牌和 \(n\) 张攻击牌: 攻击牌:打出后对对方造成等于牌上的数字的伤害. 强化牌:打出后,假设该强化牌上的数字为 \(x\),则其他剩下的攻击牌的 ...

  6. 题解-PKUWC2018 Slay the Spire

    Problem loj2538 Solution 在考场上当然要学会写暴力,考虑如果手上已经有了\(a\)张攻击牌和\(b\)张强化牌: 首先强化牌会在攻击牌之前用(废话),其次要将两种牌分别从大往小 ...

  7. LOJ2538 PKUWC2018 Slay the Spire DP

    传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌 ...

  8. LOJ2538. 「PKUWC2018」Slay the Spire【组合数学】

    LINK 思路 首先因为式子后面把方案数乘上了 所以其实只用输出所有方案的攻击力总和 然后很显然可以用强化牌就尽量用 因为每次强化至少把下面的牌翻一倍,肯定是更优的 然后就只有两种情况 强化牌数量少于 ...

  9. PKUWC Slay The Spire

    题面链接 LOJ sol 好神啊.果然\(dp\)还是做少了,纪录一下现在的思维吧\(QAQ\). 我们首先可以发现期望是骗人的,要不然他乘的是什么xjb玩意. 其实就是要求所有方案的最优方案和. 因 ...

随机推荐

  1. DNS 介绍

    DNS 介绍 DNS 为 Domain Name System (域名系统的缩写),它是一种将ip地址转换为对应的主机名或将主机名转换成与之对应的ip地址的一种服务机制.DNS使用TCP和UDP,端口 ...

  2. 主攻ASP.NET MVC4.0之重生:CheckBoxListHelper和RadioBoxListHelper的使用

    在项目中新建Helpers文件夹,创建CheckBoxListHelper和RadioBoxListHelper类. CheckBoxListHelper代码 using System; using ...

  3. Django 组合索引

    TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join( ...

  4. CentOS7安装 VirtualBox虚拟机

    官方地址  : https://www.virtualbox.org/wiki/Linux_Downloads 1.导入 yum 源 Oracle Linux / RHEL #cd /etc/yum. ...

  5. STL中一些函数的应用

    1.nth_element():找到第几大的数.用法:nth_element(a,a+k,a+n),返回一个数组a中第k大的数,时间复杂度比较小,头文件#include <algorithm&g ...

  6. 关于centos7下/etc/sysconfig/目录没有iptables问题

    在新买的centos7服务器中想打开防火墙,采用传统centos6的方式用service iptables restart/stop/status 之后报错: 而在/etc/sysconfig/目录下 ...

  7. 好的SQL写法

    DECLARE @beginTime VARCHAR(20)= '2017-12-20 00:00:00';DECLARE @endTime VARCHAR(20)= '2017-12-26 00:0 ...

  8. 分开统计的sql写法

    DECLARE @StartDate DATETIME= '2017-10-13 00:00:00';DECLARE @EndDate DATETIME= '2017-11-13 23:00:00'; ...

  9. tp后台注册登录配置项

    1.在application目录下Common/Conf/config.php中 2-17行,首先判断在data目录下有没有特意设置的db.php, config.php,route.php,如果有就 ...

  10. rehash过程

    步骤 1) 首先创建一个比现有哈希表更大的新哈希表(expand)2) 然后将旧哈希表的所有元素都迁移到新哈希表去(rehash)   dictAdd 对字典添加元素的时候, _dictExpandI ...