create table hive_1(id string,name string ,gender string)
row format delimited fields terminated by ','
stored as TEXTFILE;

load data local inpath '/luozt/hive_001.txt' into table hive_1 ;

create EXTERNAL table hive_2(id string,name string ,gender string)
row format delimited fields terminated by ','
stored as TEXTFILE;

load data inpath '/luo/hive_001.txt' into table hive_2 ;
//查询记录数
count 'hive_1'
//清空表
truncate table log_struct;

//删除表
drop table log_struct;

create table partition_table
(name string ,salary float,gender string,level string)
partitioned by(dt string,dept string)
row format delimited fields terminated by ','
stored as TEXTFILE;

desc partition_table

show partitions partition_table;//查看分区表的分区信息
//给分区表插入数据
load data local inpath '/luozt/par.txt' into table partition_table partition(dt='2014-04-01',dept='yonyu');

添加分区:
alter table partition_table add partition(dt='2014-04-03',dept='yonyou3') location '/user/hive/warehouse/luo.db/partition_table/dt=2014-04-03/dept=yonyou3';

删除分区:
alter table partition_table drop partition(dt='2014-04-03',dept='yonyou4')

select * from partition_table where salary>7600;
//嵌套
from (select name,salary from partition_table)e select e.name,e.salary where e.salary>7600;

//in 的用法

select * from partition_table where salary in(7000,6700);

//case的用法
select name,salary,
case
when salary<6800 then 'L1'
when salary>6800 and salary <8000 then 'L2'
when salary>8100 then 'L3'
else 'L0'
end as salary_level
from partition_table;

//having的用法

select gender,sum(salary) from partition_table group by gender;

//练习join
create table group1 (user string,score int)
row format delimited fields terminated by ','
stored as TEXTFILE;

//
create table group_join (user string,class string)
row format delimited fields terminated by ','
stored as TEXTFILE;

//普通的join
select b.class,a.score from group1 a join group_join b on (a.user=b.user);
//有个表很小时用mapjoin(b) b为小表
select /*+MAPJOIN(b)*/ b.class,a.score from group1 a join group_join b on (a.user=b.user);
//left Semi join

//分组
select user ,sum(score) from group1 group by user; ----分组时select的字段要全部作为group字段
//优化
set hive.map.aggr=true

//order by
create table orderby_test (user string,class string,math int,english int)
row format delimited fields terminated by ','
stored as TEXTFILE;

//默认升序
select * from orderby_test order by math; --desc改为降序,若将set hive.mapred.mode=strict;则要加上limit

//sort by 不受set hive.mapred.mode=strict的影响 可以指定 set mapred.reduce.tasks=<number> sort by 只会在么给reduce上进行排序,reduce输出的数据时有序的,提高全局排序的效率

//union all hive不支持顶层union ,只能将union封装在子查询中,且必须为union的查询输出定义别名
select * from (select count(*) from group1 union all select count(*) from orderby_test) temp;

//记得这种用法
select name,height,mark
from
(select name,height,'0' as mark from a
union all
select name height,'1' as mark from b) t;

//索引
create table index_test(id int,name string) partitioned by (dt string) row format delimited fields terminated by ',' stored as TEXTFILE;
//先创建一个临时表
create table temp(id int,name string ,dt string ) row format delimited fields terminated by ',' stored as TEXTFILE;
//动态分区
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partition=true;

insert overwrite table index_test partition(dt) select id,name,dt from temp;

//索引 创建索引时要有partition 否则不行
create index index1 on table index_test(id) AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' with DEFERRED REBUILD;

alter index index1 on index_test rebuild;

show index on index_test;
show partitions index_test;

//Bucket 桶 就是抽样

create table tb_tmp(id int,age int,name string,timeflag bigint) row format delimited fields terminated by ',' ;
create table tb_stu(id int,age int,name string,timeflag bigint) clustered by(id) sorted by (age) into 5 buckets row format delimited fields terminated by ','

insert into table tb_stu select id,age,name,timeflag from tb_tmp;

利用桶进行查询
select * from tb_stu tablesample(bucket 1 out of 5 on id);

//存储类型和复合数据类型
rcfile 是直接load不进去的 要用临时表insert进去

//array
create table log_array(ip string,uid array<bigint>) partitioned by (dt string) row format delimited fields terminated by ',' collection items terminated by '|' stored AS TEXTFILE;

load data local inpath '/luo/log_array.txt' into table log_array partition(dt=20150902);
//查询array中的值
select uid[1] from log_array;
select ip,size(uid) from log_array where dt=20150902;
select ip from log_array where dt=20150902 and array_contains(uid,4732974)

//map
create table log_map(ts string,ip string,type string,logtype string,request Map<string,string>,response Map<string,string>)
row format delimited fields terminated by '#' collection items terminated by '&' Map keys terminated by '=' stored as TEXTFILE;

//查询
select request['src'] from log_map;

//struct
create table log_struct(ip string,user struct<name:string,age:int>)
row format delimited fields terminated by ','
collection items terminated by '#'
stored as TEXTFILE;

数据:192.168.1.1,wow#23
192.168.1.1,wow#23
192.168.1.1,wow#23
192.168.1.1,wow#23
192.168.1.1,wow#23
192.168.1.1,wow#23

select user.name from log_struct;

hadoop-hive学习笔记的更多相关文章

  1. hive学习笔记之一:基本数据类型

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. hive学习笔记之三:内部表和外部表

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. hive学习笔记之四:分区表

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. hive学习笔记之五:分桶

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. hive学习笔记之六:HiveQL基础

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. hive学习笔记之七:内置函数

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  7. hive学习笔记之九:基础UDF

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. hive学习笔记之十:用户自定义聚合函数(UDAF)

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<hive学习笔记>的第十 ...

  9. hive学习笔记之十一:UDTF

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  10. Hadoop入门学习笔记---part4

    紧接着<Hadoop入门学习笔记---part3>中的继续了解如何用java在程序中操作HDFS. 众所周知,对文件的操作无非是创建,查看,下载,删除.下面我们就开始应用java程序进行操 ...

随机推荐

  1. Linux服务器iops性能测试-iozone

    1. 选用工具: iozone           下载地址:http://www.iozone.org/ (直接下载rpm包) 2. 工具安装: 执行命令: rpm -ivh iozone-3-40 ...

  2. windows通过ftp下载linux文件

    # windows 下载 linux的文件>> ftp <domain_or_ip>>> <input_username>>> <in ...

  3. 转移灶,原发灶,cfDNA的外显子测序得到的突变点的关系

    文章名称:Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients IdentifiesClinically Actionab ...

  4. INSPIRED启示录 读书笔记 - 第14章 产品评审团

    制定更及时.更可靠的产品决策 制定决策通常是既耗时又费力的,产品公司需要一套机制让决策者和相关人员及时作出明智的产品决策.成立产品评审团是最好的解决途径 组织产品评审团的难点在于既要为高管制定产品决策 ...

  5. python装饰器实现HTTP请求耗时和入参返回日志记录

    装饰器方法: 1 def decoArgs(server_name): 2 def deco(func): 3 def wrapper(view, request, *args, **kwargs): ...

  6. Jquery 获取地址位置

    直接在浏览器地址 输入: http://pv.sohu.com/cityjson?ie=utf-8 可以查看数据格式 引入一个搜狐的js库: <script src="http://p ...

  7. Linux vi 编辑器 常用命令行

    1.vi 模式   a) 一般模式: vi 处理文件时,一进入该文件,就是一般模式了.   b) 编辑模式:在一般模式下可以进行删除,复制,粘贴等操作,却无法进行编辑操作.等按下'i,I,o,O,a, ...

  8. 4950: [Wf2017]Mission Improbable

    4950: [Wf2017]Mission Improbable Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 608  Solved: 222[Sub ...

  9. JS,Jquery获取屏幕的宽度和高度

    Javascript: 网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.b ...

  10. Email-Ext Plugin install ------ Jenkins Plugins

    一.基本信息 1. Email-Ext Plugin功能简介 支持Jenkins邮件发送时,自定义邮件内容功能.详情可以查看jenkins的wiki : https://wiki.jenkins-ci ...