NEUACM1132: Renew MST Quickly 增量最小生成树
题目链接:http://acm.neu.edu.cn/hustoj/problem.php?id=1132
和UVa11354很类似
题意:
原先有一棵树,每次加一条边,看最小生成树大小;
这个和增量最小生成树,还是有一点点差别的,就是,正版增量最小生成树,是每次加入一条边后,删掉那个换里面的最大权,当然这里没有这个;
每次的找LCA,我猜可能LCA都会超时吧,没事过,也有可能可以,但是,因为是一直是之前的那棵树,还不如一次性算出来dis i 到 j 的最长路;
#include <bits/stdc++.h> using namespace std; const int maxn = + ; struct Edge
{
int from,to,dist;
}; vector<Edge> G[maxn];
int pa[maxn];
bool vis[maxn];
int dis[maxn][maxn]; void dfs(int u,int fa)
{
int d = G[u].size();
for(int i=; i<d; i++)
{
int v = G[u][i].to;
if(v!=fa)
dfs(v,pa[v]=u);
}
} void _dfs(int k,int cur,int cost) {
vis[cur] = ; int d = G[cur].size();
for(int i=;i<d;i++) {
if(!vis[G[cur][i].to]) {
dis[k][G[cur][i].to] = max(cost,max(dis[k][G[cur][i].to],G[cur][i].dist));
int v = G[cur][i].to;
_dfs(k,v,dis[k][v]);
}
} } int main()
{
int n;
int kase = ;
while(scanf("%d",&n)!=EOF)
{
printf("Test #%d\n",++kase); for(int i=;i<n;i++)
G[i].clear(); int sum = ;
for(int i=; i<n-; i++)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
u--;
v--;
sum+=d;
G[u].push_back((Edge)
{
u,v,d
});
G[v].push_back((Edge)
{
v,u,d
});
dis[u][v] = d;
dis[v][u] = d;
}
pa[] = -;
dfs(,-); for(int i=;i<n;i++) {
memset(vis,,sizeof(vis));
vis[i] = ;
_dfs(i,i,);
} int q;
scanf("%d",&q); while(q--)
{
memset(vis,,sizeof(vis));
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
u--;
v--; int maxx = ; maxx = dis[u][v]; if(maxx>d)
printf("%d\n",sum-maxx+d);
else printf("%d\n",sum); }
} return ;
}
NEUACM1132: Renew MST Quickly 增量最小生成树的更多相关文章
- poj 1679 The Unique MST(唯一的最小生成树)
http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submis ...
- Codeforces 1108F MST Unification(最小生成树性质)
题目链接:MST Unification 题意:给定一张连通的无向带权图.存在给边权加一的操作,求最少操作数,使得最小生成树唯一. 题解:最小生成树在算法导论中有这个性质: 把一个连通无向图的生成树边 ...
- POJ 1679 The Unique MST 【判断最小生成树是否唯一】
Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Defini ...
- POJ 1679 The Unique MST(判断最小生成树是否唯一)
题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...
- CF F. MST Unification (最小生成树避圈法)
题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为 ...
- POJ1679 The Unique MST(Kruskal)(最小生成树的唯一性)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 27141 Accepted: 9712 D ...
- AT3611 Tree MST 点分治+最小生成树
正解:点分治+最小生成树 解题报告: 传送门! 然后这题麻油翻译,,,所以这边的建议是先说下题意呢亲 所以题意大概就是说,给一棵n个节点的树,树上每个点都有个权值,然后构造一个完全图,(u,v)之间连 ...
- (F. MST Unification)最小生成树
题目链接:http://codeforces.com/contest/1108/problem/F 题目大意:给你n个点和m条边,然后让你进行一些操作使得这个图的最小生成树唯一,每次的操作是给某一条边 ...
- The Unique MST POJ - 1679 最小生成树判重
题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...
随机推荐
- 2.5 Go错误处理
defer import "fmt" func testDefer(){ defer fmt.Println() defer fmt.Println() fmt.Println() ...
- Transform 引起的 z-index "失效"
重新学习CSS后的第三天,学习制作阴影的过程中,发现的问题:设置了box-shadow后展现的阴影: 添加transform:rotate(10deg);后的效果: 查看CodePen例子:阴影效果 ...
- Python 字符串 (str)
作者博文地址:https://www.cnblogs.com/liu-shuai/ Python字符串的常用操作包括以下但不限于以下操作: 1 字符串的替换.删除.切片.复制.连接.比较.查找.分割等 ...
- TOJ 3176 Challenge from XOR
Description Mr. AngelClover just learnt XOR on his Computer Class. XOR is a bit arithmetic operator ...
- 用R处理不平衡的数据
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文来自云+社区翻译社,作者ArrayZoneYour 在分类问题当中,数据不平衡是指样本中某一类的样本数远大于其他的类别样本数.相比于多分 ...
- Java学习第二十四天
1:多线程(理解) (1)JDK5以后的针对线程的锁定操作和释放操作 Lock锁 (2)死锁问题的描述和代码体现 (3)生产者和消费者多线程体现(线程间通信问题) 以学生作为资源来实现的 资源类:St ...
- Django(5) session登录注销、csrf及中间件自定义、django Form表单验证(非常好用)
一.Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: 数据库(默认) 缓存 文件 缓存+数据库 加密cookie 1.数据库Session 1 2 3 4 5 ...
- [转]Asp.net MVC中的ViewData与ViewBag
本文转自:http://www.cnblogs.com/wintersun/archive/2012/01/21/2328563.html 在Asp.net MVC 3 web应用程序中,我们会用到V ...
- 微信小程序支付c#后台实现
今天为大家带来比较简单的支付后台处理 首先下载官方的c#模板(WxPayAPI),将模板(WxPayAPI)添加到服务器上,然后在WxPayAPI项目目录中添加两个“一般处理程序” (改名为GetOp ...
- C#中DataTable与泛型集合互转(支持泛型集合中对象包含枚举)
最近在做WCF,因为是内部接口,很多地方直接用的弱类型返回(DataSet),这其实是一种非常不好的方式,最近将项目做了修改,将所有接口返回值都修改成强类型,这样可以减少很多与客户端开发人员的沟通,结 ...