题目链接:https://www.luogu.org/problemnew/show/P2455

无解:最后一列对应元素不为0,前面全是0.

无穷解:一行全是0.

嗯...在消元过程中不要直接拿矩阵元素自己消,会把自己消成0.

 #include <algorithm>
#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const int maxn = ;
const double eps = 1e-;
double A[maxn][maxn], ans[maxn];
int n;
int main()
{
scanf("%d",&n);
for(int i = ; i <= n; i++)
for(int j = ; j <= n+; j++)
scanf("%lf", &A[i][j]);
for(int i = ; i <= n; i++)
{
int p = i;
for(int j = i + ; j <= n; j++)
if(fabs(A[j][i]) > fabs(A[p][i])) p = j;
for(int j = ; j <= n + ; j++) swap(A[p][j],A[i][j]); if(fabs(A[i][i]) < eps) continue;
double div = A[i][i];
for(int j = ; j <= n + ; j++) A[i][j]/=div;
for(int j = ; j <= n; j++)
{
if(i != j)
{
double div = A[j][i];
for(int k = ; k <= n + ; k++) A[j][k] -= A[i][k]*div;
}
}
}
int NoSolution = , ManySolution = ;
for(int i = ; i <= n; i++)
{
int Nonum = , Manynum = ;
for(int j = ; j <= n + && fabs(A[i][j]) < eps; j++)
Nonum++,Manynum++;
if(Manynum > n) ManySolution = ;
if(Nonum == n) NoSolution = ;
}
if(NoSolution) {printf("-1");return ;}
if(ManySolution) {printf("");return ;}
for(int i = n; i >= ; i--)
{
ans[i] = A[i][n+];
for(int j = i - ; j >= ; j--)
{
A[j][n+] -= ans[i] * A[j][i];
A[j][i] = ;
}
}
for(int i = ; i <= n; i++)
printf("x%d=%.2lf\n",i,ans[i] + eps);
return ;
}

【luogu P2455 [SDOI2006]线性方程组】 题解的更多相关文章

  1. Luogu P2455 [SDOI2006]线性方程组 真•高斯消元板子

    果然如Miracle学长所说...调了一天...qwq..还是过不了线下的Hack upd after 40min:刚刚过了 就是多了一个判无解的操作... 当系数都为0,且常数项不为0时,即为无解. ...

  2. P2455 [SDOI2006]线性方程组(real gauss)

    P2455 [SDOI2006]线性方程组 (upd 2018.11.08: 这才是真正的高斯消元模板) 找到所消未知数(设为x)系数最大的式子,把它提上来 把这个式子的 x 系数约成1 把这个式子用 ...

  3. P2455 [SDOI2006]线性方程组

    P2455 [SDOI2006]线性方程组 真\(\cdot\)高斯消元模板题 由于各种hack数据被造出来~码量突增~,其实也就多了二三十行 将每行系数消到最多有一个非0数 特殊情况: 在过程同时 ...

  4. 洛谷P2455 [SDOI2006]线性方程组(高斯消元)

    题目描述 已知n元线性一次方程组. 其中:n<=50, 系数是[b][color=red]整数<=100(有负数),bi的值都是整数且<300(有负数)(特别感谢U14968 mmq ...

  5. 洛谷P2455 [SDOI2006]线性方程组

    高斯消元模板 要求输出解的情况(无穷解/无解) 1. 之前写的丑陋代码 #include <iostream> #include <cstdio> #include <c ...

  6. 【luogu P5022 旅行】 题解

    题目连接:https://www.luogu.org/problemnew/show/P5022 \(NOIP2018 DAY2T1\) 考场上只写了60分,很容易想到当 m = n - 1 时的树的 ...

  7. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  8. 【luogu P2831 愤怒的小鸟】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2831 写点做题总结:dp,搜索,重在设计状态,状态设的好,转移起来也方便. 对于一条抛物线,三点确定.(0, ...

  9. 【luogu P2827 蚯蚓】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2827 35分:暴力sortO(mnlogn). 80分:考虑到每次不好维护不被切的点+q,正难则反.改成维护 ...

随机推荐

  1. TreeMap和TreeSet简单应用

    建一个实体类并实现Comparable接口重写compareTo方法 public class pojo implements Comparable<pojo> { private int ...

  2. 如何设计一个“高大上”的 logo

    前不久,我们老大写的一篇博客< Coding,做一个有情怀的产品 >中有提到设计 Coding logo 的大致由来,今天我就设计 Coding 猴头的过程具体说说如何设计一个 logo. ...

  3. Path类 操作文件类

    // Path类 IO命名空间 静态类 不能创建对象类名. string str =@"E:\C#程序设计基础入门教程\(第十一天)\122\22\nee.txt"; ////in ...

  4. c# 文件名排序

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.C ...

  5. android JNI学习之一

    执行System.loadLibrary()函数时,VM会反向调用*.so里的JNI_OnLoad()函数.用途有二:1. VM询问此*.so使用的JNI版本编号.2. VM要求*.so做一些初期设定 ...

  6. java基础--常用函数总结

    java基础--常用函数总结 2019-3-16-23:28:01-----云林原创 1.split()字符串分割函数 将一个字符串分割为子字符串,然后将结果作为字符串数组返回. 2.Math.flo ...

  7. VS2015自定义类模板的方法

    在前一段时间忽然想给自己电脑上的vs新建类的时候添加一个自定义个注释,但是在网上搜了很久都是说vs2012之类的方法系统也都是win7.XP之类的独独没有win8的.故此自己不断的尝试修改发现方法如下 ...

  8. Cocos2d-x手游技术分享(1)-【天天打蚊子】数据存储与音效篇

    前言: 手游项目<天天打蚊子>终于上线,特地写几篇技术分享文章,分享一下其中使用到的技术,其中使用cocos2d-x引擎,首选平台iOS,也请有iPhone或者iPad的朋友帮忙下载好评. ...

  9. HDU 5011 NIM博弈

    http://www.cnblogs.com/exponent/articles/2141477.html http://acm.hust.edu.cn/vjudge/contest/122814#p ...

  10. python私有成员

    在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用.在Python中,是通过_前缀来实现的. 正常的函数和变量名是公开的(publ ...