P1017 进制转换

题目描述

我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式。例如:123可表示为 1\times 10^2+2\times 10^1+3\times 10^01×102+2×101+3×100这样的形式。

与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式。一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数。如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1。例如,当R=7时,所需用到的数码是0,1,2,3,4,5和6,这与其是R或-R无关。如果作为基数的数绝对值超过10,则为了表示这些数码,通常使用英文字母来表示那些大于9的数码。例如对16进制数来说,用A表示10,用B表示11,用C表示12,用D表示13,用E表示14,用F表示15。

在负进制数中是用-R 作为基数,例如-15(十进制)相当于110001(-2进制),并且它可以被表示为2的幂级数的和数:

110001=1\times (-2)^5+1\times (-2)^4+0\times (-2)^3+0\times (-2)^2+0\times (-2)^1 +1\times (-2)^0110001=1×(−2)5+1×(−2)4+0×(−2)3+0×(−2)2+0×(−2)1+1×(−2)0

设计一个程序,读入一个十进制数和一个负进制数的基数, 并将此十进制数转换为此负进制下的数:-R∈{-2,-3,-4,...,-20}

输入输出格式

输入格式:

输入的每行有两个输入数据。

第一个是十进制数N(-32768<=N<=32767); 第二个是负进制数的基数-R。

输出格式:

结果显示在屏幕上,相对于输入,应输出此负进制数及其基数,若此基数超过10,则参照16进制的方式处理。

输入输出样例

输入样例#1: 复制

30000 -2
输出样例#1: 复制

30000=11011010101110000(base-2)
输入样例#2: 复制

-20000 -2
输出样例#2: 复制

-20000=1111011000100000(base-2)
输入样例#3: 复制

28800 -16
输出样例#3: 复制

28800=19180(base-16)
输入样例#4: 复制

-25000 -16
输出样例#4: 复制

-25000=7FB8(base-16)

说明

NOIp2000提高组第一题

负进制转化

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 110
using namespace std;
char c[N];
int n,m,k,sum;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    n=read(),m=read();
    printf("%d=",n);
    while(n)
    {
        k=n%m;
        n/=m;
        ) k-=m,n+=;
        ) c[++sum]=+'A');
        ');
    }
    ;i--)
     printf("%c",c[i]);
    printf("(base%d)",m);
    ;
}

洛谷——P1017 进制转换的更多相关文章

  1. 洛谷P1017 进制转换

    洛谷P1017 进制转换 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 \(1*10 ...

  2. 洛谷p1017 进制转换(2000noip提高组)

    洛谷P1017 进制转换 题意分析 给出一个数n,要求用负R进制显示. n∈[-32768,32767].R ∈[-20,-2] 考察的是负进制数的转换,需要理解短除法. 看到这道题的时候,我是比较蒙 ...

  3. 集训作业 洛谷P1017 进制转换

    这个题的题目真的太恶心了. 重点是他的题目描述和他的目标没啥关系. 和最终目的有关系的只有这么一句话:”输出此负进制数及其基数,若此基数超过10,则参照16进制的方法处理.“ 我们通过看这句话可以发现 ...

  4. 洛谷 P1017 进制转换

    推荐洛谷 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*10^2+2*10^1+ ...

  5. [NOIP2000] 提高组 洛谷P1017 进制转换

    题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*10^2+2*10^1+3*10^ ...

  6. 洛谷—— P1017 进制转换

    https://www.luogu.org/problem/show?pid=1017#sub 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1) ...

  7. java实现 洛谷 P1017 进制转换

    import java.util.Scanner; public class Main { private static Scanner cin; public static void main(St ...

  8. 洛谷P2084 进制转换

    题目背景 无 题目描述 今天小明学会了进制转换,比如(10101)2 ,那么它的十进制表示的式子就是 : 1*2^4+0*2^3+1*2^2+0*2^1+1*2^0, 那么请你编程实现,将一个M进制的 ...

  9. 洛谷——P1143 进制转换

    P1143 进制转换 题目描述 请你编一程序实现两种不同进制之间的数据转换. 输入输出格式 输入格式: 输入数据共有三行,第一行是一个正整数,表示需要转换的数的进制n(2≤n≤16),第二行是一个n进 ...

随机推荐

  1. [洛谷P2626]斐波那契数列(升级版)

    题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...

  2. POJ3259:Wormholes(spfa判负环)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 68097   Accepted: 25374 题目链接: ...

  3. selenium 获取某个元素的html

    <table> <tbody id="tb-37327761306"> <tr class="sep-row"><td ...

  4. APP本地服务安全测试

    一.安全测试基本分类: 1.系统安全 系统加固 安全加固:比如linux中关闭telnet端口,修改ssh端口 检测一些不必要的服务(需要卸载一个ping)--保证系统的最小集 app安全加固:加一层 ...

  5. Linux Uptime 命令,让你知道你的系统运行了多久

    对于一些人来说系统运行了多久是无关紧要的,但是对于服务器管理员来说,这是相当重要的信息.服务器在运行重要应用的时候,必须尽量保证长时间的稳定运行,有时候甚至要求零宕机.那么我们怎么才能知道服务器运行了 ...

  6. Sqlserver面试题

    1.用一条SQL语句 查询出每门课都大于80分的学生姓名 name   kecheng   fenshu 张三     语文       81张三     数学       75李四     语文   ...

  7. es6+最佳入门实践(9)

    9.Iterator和for...of 9.1.Iterator是什么? Iterator又叫做迭代器,它是一种接口,为各种不同的数据结构提供统一的访问机制.这里说的接口可以形象的理解为USB接口,有 ...

  8. All in One到”分布式“迁移过程中的坑

    为什么“分布式”要加引号? 与其他公司提高并发性能的场景可能不太一样,我们的系统之前是多个模块共用一个tomcat来运行的(All in One),模块有很多,光安装包就几十个.当某个模块或某几个模块 ...

  9. [bzoj3224]Tyvj 1728 普通平衡树——splay模板

    题目 你需要写一种数据结构支援以下操作. 插入元素. 删除元素. 查询元素的排名. 查询第k小的元素. 查询元素前趋. 查询元素后继. 题解 BBST裸题. 代码 #include <cstdi ...

  10. Linux搭建JavaEE开发环境与Tomcat——(十)

    服务器通过ip地址访问是不需要备案的,如果通过域名访问的话才需要备案. 1.安装Mysql 在CentOS7上安装MySQL时,出现了以下的提示: 原因是: CentOS7带有MariaDB而不是my ...