目录

1.1 欢迎
1.2 机器学习是什么

1.2.1 机器学习定义

1.2.2 机器学习算法

  - Supervised learning 监督学习

  - Unsupervised learning  无监督学习

  - Reinforcement learning 强化学习

  - Recommender systems 推荐系统

1.2.3 课程目的

    如何在构建机器学习系统时,选择最好的实践类型决策、节省时间。
  1.3 监督学习

     1.3.1 Regression 回归问题

     1.3.2 Classification 分类问题

        1.3.3 回归和分类
  1.4 无监督学习

     1.4.1 聚类算法 Clustering algorithm

1.2  机器学习是什么

   参考视频: 1 - 2 - What is Machine Learning_ (7 min).mkv

1.2.1  机器学习定义

• Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.  机器学习:在进行特定编程的情况下,给予计算机学习能力的领域。

• Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to learn from
experience E with respect to some task T and some performance measure
P, if its performance on T, as measured by P, improves with experience
E.     卡内基梅隆大学Tom 定义:一个程序被认为能从经验 E 中学习,解决任务 T,达到性能度量值P, 当且仅当,有了经验 E 后,经过 P 评判,程序在处理 T 时的性能有所提升。

  例题,以垃圾邮件监测为例,解释Tom 定义中字母的对应:

1.2.2  机器学习算法

1、常用:

  Supervised Learning 监督学习:学习数据带有标签

    Unsupervised Learning 无监督学习:没有任何的标签,或者有相同的标签。已知数据集,不知如何处理,也未告知每个数据点是什么。

       (右侧的例子,无监督学习将数据划分为两个集合,也就是聚类clustering algorithm)

2、其他:

    Reinforcement learning 强化学习, recommender systems 推荐系统

1.2.3  课程目的

  If you actually tried to develop a machine learning system, how to make those best practices type decisions about the way in which you build your system. 如何在构建机器学习系统的时候选择最好的实践类型决策,节省时间。

1.3 监督学习

参考视频: 1- 3- Supervised Learning (12 min).mkv

1.3.1  Regression回归问题:预测结果是连续的输出值

   在历史房价数据的基础上,预测房屋价格。可以使用直线拟合(粉色),也可以使用二次曲线拟合(蓝色)。

    

    监督学习:基于已有的正确结果。           回归问题:预测连续的输出值

1.3.2  Classification分类问题:预测结果是离散的多个值

  

下图是基于两个特征(两个维度)进行预测的例子, 右边是其他可能维度(维度可能有无穷多个)

1.3.3  区分 “分类问题”和“回归问题”

    例题:

1.4 无监督学习

  参考视频: 1 - 4 - Unsupervised Learning (14 min).mkv

1.4.1  聚类算法clustering algorithm 在现实生活中的应用

  1、Google News 每天将爬来的网址分为一个个的新闻专题。

  2、基因信息分组。

3、组织大型计算机集群。 社交网络的分析。市场分割。天文数据分析

    

  4、鸡尾酒party问题,将混在一起的多个音频源拆开。

通过这个例子,特别强调了Octave和MATLAB这些软件的简洁之处,这个算法的实现在Octave里只需要一行代码

[W,s,v] = svd((repmat(sum(x.*x,),size(x,),).*x)*x');

【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统

    Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...

  3. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维

    Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类

    Lecture 13 聚类 Clustering 13.1 无监督学习简介  Unsupervised Learning Introduction 现在开始学习第一个无监督学习算法:聚类.我们的数据没 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机

    Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 18—Photo OCR 应用实例:图片文字识别

    Lecture 18—Photo OCR 应用实例:图片文字识别 18.1 问题描述和流程图 Problem Description and Pipeline 图像文字识别需要如下步骤: 1.文字侦测 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

随机推荐

  1. 剑指offer--30.二叉搜索树的后序遍历序列

    正常情况下,因为二叉搜索树,左子树所有结点比根小,右子树所有结点比根大,所以循环一遍就能结束 ----------------------------------------------------- ...

  2. New Concept English three (42)

    21 33 Cave exploration, or pot-holing, as it has come to be known, is a relatively new sport. Perhap ...

  3. [置顶] Android开发百科全书

    友情提示根据目录 快速查找问题 %1$s %1$d Android string 1.整型,比如"我今年23岁了",这个23是整型的.在string.xml中可以这样写,<s ...

  4. Leetcode 1019. Next Greater Node In Linked List

    单调栈的应用. class Solution: def nextLargerNodes(self, head: ListNode) -> List[int]: stack = [] ret = ...

  5. Beego的controller怎么用嵌入实现继承问题

    Go Lang是无继承层次的轻量级面向对象编程范式.Go Lang中的接口与实现之间完全是非侵入式的.这种接口实现方式很值得称赞.不但如此,在Go Lang中只有类型嵌入而没有类型继承.这规避了很多与 ...

  6. 使用WPScan破解wordpress站点密码

    我这里使用的Kali Linux,它默认安装了WPScan. 在使用WPScan之前,先更新它的漏洞数据库: # wpscan –update 扫描wordpress用户 wpscan -–url [ ...

  7. HTML5编写规范

    HTML和CSS编码规范内容 一.HTML规范 二.CSS规范 三.注意事项: 四.常用的命名规则 五.CSS样式表文件命名 六.文件命名规则 一.HTML规范: 1.代码规范 页面的第一行添加标准模 ...

  8. C#操作带名称空间的xml

    以前操作xml一般用下面这种方式: 好处是XDocument 能使用linq xmlPath = “path”; XDocument myXDoc = XDocument.Load(xmlPath); ...

  9. asp select count(*) 用 open还是excute

    dSql1="select count(*) from test_hist where uid="&cid  'dRs1.open dSql1,tConn,1,1  'dS ...

  10. 通过IHttpModule,IHttpHandler扩展IIS

    IIS对Http Request的处理流程 当Windows Server收到从浏览器发送过来的http请求,处理流程如下(引用自官方文档): 最终请求会被w3wp.exe处理,处理过程如下: 左边蓝 ...