~~~题面~~~

题解:

  ,,,考场上看到这题,没想到竟然是省选原题QAQ,考场上把它当数学题想了好久,因为不知道怎么处理有些数没有逆元的问题。。。。知道这是线段树后恍然大悟。

  首先可以一开始就建出一个长度为n的操作序列,初始值都是1,表示一开始默认是1乘上n个1,因为乘1也就相当于没乘。

  对于操作1,直接将操作序列上对应的位置单点修改为给定值,维护区间乘积。

  对于操作2,将序列上对应位置单点修改为1.

  查询直接查询线段树的根即可。

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 401000
#define LL long long int n, p, w, go, T;
int l[AC], r[AC];
LL tree[AC]; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void pre()
{
n = read(), p = read();
} void update(int x)
{
tree[x] = tree[x * ] * tree[x * + ] % p;
} void build(int x, int ll, int rr)
{
l[x] = ll, r[x] = rr;
if(ll == rr)
{
tree[x] = ;
return;
}
int mid = (ll + rr) >> ;
build(x * , ll, mid);
build(x * + , mid + , rr);
update(x);
} void change(int x)
{
if(l[x] == r[x])
{
tree[x] = w;
return ;
}
int mid = (l[x] + r[x]) >> ;
if(go <= mid) change(x * );
else change(x * + );
update(x);
} void work()
{
T = read();
while(T--)
{
pre();
build(, , n);
int opt;
for(R i = ; i <= n; i ++)
{
opt = read();
if(opt == )
{
w = read() % p, go = i;
change();
}
else
{
w = , go = read();
change();
}
printf("%lld\n", tree[]);
}
}
} int main()
{
freopen("in.in", "r", stdin);
work();
fclose(stdin);
return ;
}

[TJOI2018]数学计算 线段树的更多相关文章

  1. 洛谷P4588 [TJOI2018]数学计算(线段树)

    题意 题目链接 Sol TJOI怎么全是板子题 对时间开个线段树,然后就随便做了.... #include<bits/stdc++.h> using namespace std; cons ...

  2. BZOJ5334:[TJOI2018]数学计算(线段树)

    Description 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型:  1 m: x = x  *  m ,输出 x%mod; 2 pos: x = x /  第pos次操作所乘 ...

  3. BZOJ5334: [Tjoi2018]数学计算

    BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...

  4. [Tjoi2018]数学计算

    [Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...

  5. [BZOJ5334][TJOI2018]数学计算(exgcd/线段树)

    模意义下除法若结果仍为整数的话,可以记录模数的所有质因子,计算这些质因子的次幂数,剩余的exgcd解决. $O(n\log n)$但有9的常数(1e9内的数最多有9个不同的质因子),T了. #incl ...

  6. BZOJ5334 [TJOI2018] 数学计算 【线段树分治】

    题目分析: 大概是考场上的签到题.首先mod不是质数,所以不能求逆元.注意到有加入操作和删除操作.一个很典型的想法就是线段树分治.建立时间线段树然后只更改有影响的节点,最后把所有标记下传.时间复杂度是 ...

  7. 洛谷P4588 [TJOI2018]数学计算 【线段树】

    题目链接 洛谷P4588 题解 用线段树维护即可 #include<algorithm> #include<iostream> #include<cstring> ...

  8. P4588 [TJOI2018]数学计算 (线段树)

    用线段树维护操作序列,叶子结点存要乘的数,非叶子结点存区间乘积,每次输出tr[1] 就是答案. 1 #include<bits/stdc++.h> 2 #define ll long lo ...

  9. 【题解】Luogu P4588 [TJOI2018]数学计算

    原题传送门 这题是线段树的模板题 显而易见,直接模拟是不好模拟的(取模后就不好再除了) 我们按照时间来建一颗线段树 线段树初始值都为1,用来维护乘积 第一种操作就在当前时间所对应的节点上把乘数改成m ...

随机推荐

  1. (转)IP地址分配原理

    网络模型介绍 在计算机网络中有著名的OSI七层协议体系结构,概念清楚,理论完整,但是它既复杂又不实用.TCP/IP体系结构则不同,得到的广泛的应用.最终结合OSI和TCP/IP的优点,采用了一种只有五 ...

  2. Java : java基础(4) 线程

    java开启多线程的方式,第一种是新建一个Thread的子类,然后重写它的run()方法就可以,调用类的对象的start()方法,jvm就会新开一个线程执行run()方法. 第二种是类实现Runabl ...

  3. vue---day03

    1. Vue的生命周期 - 创建和销毁的时候可以做一些我们自己的事情 - beforeCreated - created - beforeMount - mounted - beforeUpdate ...

  4. HDU暑假多校第六场K-werewolf

    一.题意 好人必然说真话,坏人不一定说真话,给定N个人的言论<每人一个发言.不谈及自己>,要求指出有多少个人一定是好人,有多少个人一定是坏人.#define 狼人 坏人#define 村民 ...

  5. SAPの販売管理で、価格設定をするまでの関連カスタマイズ画面

    この記事ではSAP SDで.価格を決めるまでに必要な設定画面について述べています. condition table (条件テーブル) 条件レコードのキー項目を定義したもの.3桁の数字で名前がついている ...

  6. MapRudecer

    MapReducer基本概念 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认 ...

  7. jmeter之Synchronizing Timer的理解

    该功能类似loadrunner的集合点,一般按照jmeter的树形结构,放在需要设置集合点的请求之前,两个参数的意思,我们先看官网的解释: 大概意思就是: Number of Simulated Us ...

  8. Accept 惊群现象测试perl脚本

    $uname -a Linux debian-11-34 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt9-3~deb8u1 (2015-04-24) x86_64 G ...

  9. MySQL☞dual虚拟表

    Dual表:虚拟表,专门用来测试各种函数:(本来以为跟Oracle中的dual表一样,发现还是不太一样)

  10. C#下16进制和BCD码转换代码

        private static Byte[] ConvertFrom(string strTemp) { try { if (Convert.ToBoolean(strTemp.Length & ...