Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)
将未建立贸易关系看成连一条边,那么这显然是个二分图。最大城市群即最大独立集,也即n-最大匹配。现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中。
首先范围有点大,当然是跑个dinic,转化成最大流。会使最大流减少的边相当于可能在最小割中的边,因为删掉它就相当于无代价的割掉了一条边。那么用曾经看到过的结论就可以了:当且仅当该边满流且残余网络(包括反向边)中该边两端点处于不同SCC时,该边可能在最小割中。不太会证。于是tarjan一发就可以了。注意不要把开始给的图和网络流建图搞混。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10010
#define M 300010
#define S 0
#define T 10001
char getc(){char c=getchar();while (c==||c==||c==) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p[N],t=-,color[N],ans;
int d[N],q[N],cur[N];
struct data{int to,nxt,cap,flow;
}edge[M<<];
struct data2
{
int x,y;
bool operator <(const data2&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
}v[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
void paint(int k)
{
for (int i=p[k];~i;i=edge[i].nxt)
if (color[edge[i].to]==-)
{
color[edge[i].to]=color[k]^;
paint(edge[i].to);
}
}
bool bfs()
{
int head=,tail=;q[]=S;
memset(d,,sizeof(d));d[S]=;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
int work(int k,int f)
{
if (k==T) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
work(S,N);
}
}
namespace newgraph
{
int dfn[N]={},low[N]={},stk[N],id[N],top=,cnt=,tot=,t=,p[N]={},ans=;
bool flag[N];
struct data{int to,nxt;}edge[M];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void tarjan(int k)
{
dfn[k]=low[k]=++cnt;
stk[++top]=k;flag[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (!dfn[edge[i].to]) tarjan(edge[i].to),low[k]=min(low[k],low[edge[i].to]);
else if (flag[edge[i].to]) low[k]=min(low[k],dfn[edge[i].to]);
if (dfn[k]==low[k])
{
tot++;
while (stk[top]!=k)
{
flag[stk[top]]=;
id[stk[top]]=tot;
top--;
}
flag[k]=;id[k]=tot;top--;
}
}
void work()
{
for (int i=;i<=n;i++)
if (!dfn[i]) tarjan(i);
if (!dfn[T]) tarjan(T);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read();
addedge(x,y,);
}
memset(color,,sizeof(color));
for (int i=;i<=n;i++) if (color[i]==-) color[i]=,paint(i);
for (int i=;i<=t;i++) edge[i].cap=color[edge[i^].to];
for (int i=;i<=n;i++)
if (color[i]) addedge(S,i,);
else addedge(i,T,);
dinic();
for (int i=;i<=t;i++)
if (edge[i].flow<edge[i].cap) newgraph::addedge(edge[i^].to,edge[i].to);
newgraph::work();
for (int i=;i<=t;i++)
if (edge[i].cap==&&edge[i].flow==edge[i].cap&&edge[i^].to!=S&&edge[i].to!=T&&newgraph::id[edge[i^].to]!=newgraph::id[edge[i].to])
ans++,v[ans].x=min(edge[i^].to,edge[i].to),v[ans].y=max(edge[i^].to,edge[i].to);
sort(v+,v+ans+);
cout<<ans<<endl;
for (int i=;i<=ans;i++) printf("%d %d\n",v[i].x,v[i].y);
return ;
}
Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)的更多相关文章
- poj1904 二分图匹配+强连通分量
http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...
- HAOI2017 新型城市化 二分图的最大独立集+最大流+强连通缩点
题目链接(洛谷):https://www.luogu.org/problemnew/show/P3731 题意概述:给出一张二分图,询问删掉哪些边之后可以使这张二分图的最大独立集变大.N<=10 ...
- UESTC 898 方老师和缘分 --二分图匹配+强连通分量
这题原来以为是某种匹配问题,后来好像说是强连通的问题. 做法:建图,每个方老师和它想要的缘分之间连一条有向边,然后,在给出的初始匹配中反向建边,即如果第i个方老师现在找到的是缘分u,则建边u-> ...
- 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)
[Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...
- 求去掉一条边使最小割变小 HAOI2017 新型城市化
先求最小割,然后对残量网络跑Tarjan.对于所有满流的边,若其两端点不在同一个SCC中,则这条边是满足条件的. 证明见 来源:HAOI2017 新型城市化
- 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量
Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...
- LOJ2276 [HAOI2017] 新型城市化 【二分图匹配】【tarjan】
题目分析: 这题出的好! 首先问题肯定是二分图的最大独立集,如果删去某条匹配边之后独立集是否会变大. 跑出最大流之后流满的边就是匹配边. 如果一个匹配边的两个端点在一个强连通分量里,那这条边删掉之后我 ...
- 洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】
我到底怎么建的图为啥要开这么大的数组啊?! 神题神题,本来以为图论出不出什么花来了. 首先要理解'团'的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘. 所以关于团一般都是NP问题,只有二分 ...
- hdu 4685 二分匹配+强连通分量
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 题解: 这一题是poj 1904的加强版,poj 1904王子和公主的人数是一样多的,并且给出 ...
随机推荐
- PHP将二位数组按照第二维的某个元素的值进行排序
例如: //原始数组是这样的,希望能够按照第二维中的run_date升序或者降序进行排序: $arr=array( 0=>array( 'run_date'=>'2017-11-21', ...
- GIt+jenkins代码自动上线
代码自动上线功能 企业部署代码上线是件比较麻烦的事情,还好我们有jenkins这个持续集成的软件可以帮助我们做很多的事情,现在我们就 来测试用jenkins推送代码上线. 我们这里测试的是一个html ...
- java递归 斐波那契数列递归与非递归实现
递归简单来说就是自己调用自己, 递归构造包括两个部分: 1.定义递归头:什么时候需要调用自身方法,如果没有头,将陷入死循环 2.递归体:调用自身方法干什么 递归是自己调用自己的方法,用条件来判断调用什 ...
- angularjs Directive自定义指令详解
作用:需要用Directive有下面的情景: 1.使你的Html更具语义化,不需要深入研究代码和逻辑即可知道页面的大致逻辑. 2. 抽象一个自定义组件,在其他地方进行重用. 3.使用公共代码,减少重复 ...
- npm 如何提升最新版本
首先我们查看一下npm当前版本,打开cmd 运行命令: npm -v 如果不是最新版本,运行一下代码即可. npm install -g npm 这样npm就更新到最新版本了. 如果想更新到指定版本, ...
- JavaSE 第二次学习随笔(四)
---------------------------------------------------------------------------------------------------- ...
- Hadoop(10)-HDFS的DataNode详解
1.DataNode工作机制 1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳. 2)DataNode启 ...
- docker使用命令汇总
docker命令 docker ps 容器列表 docker ps -a 所有容器列表,包含未运行的容器 docker image ls 镜像列表 docker logs -f xxx 容器日志 do ...
- C语言实例解析精粹学习笔记——39(简单的文本编辑器)
实例说明: 编辑一个简单的单行文本编辑器,编辑命令有以下几种:(E.Q.R.I.D) 只有自己在完全空白的情况下编写出来的程序,才是真正自己会的程序,现在所做的,不过是程序的搬运工,把书上的程序搬到网 ...
- C++常量(const)的使用
#include <iostream> using namespace std; class MyClass { public: int GetValue() const ; int Ge ...