转载https://www.cnblogs.com/fzl194/p/9095177.html

组合数取模方法总结(Lucas定理介绍)

1.当n,m都很小的时候可以利用杨辉三角直接求。 
C(n,m)=C(n-1,m)+C(n-1,m-1);

const int maxn = 1e5 + ;
ll fac[maxn];//阶乘打表
void init(ll p)//此处的p应该小于1e5,这样Lucas定理才适用
{
fac[] = ;
for(int i = ; i <= p; i++)
fac[i] = fac[i - ] * i % p;
}
ll pow(ll a, ll b, ll m)
{
ll ans = ;
a %= m;
while(b)
{
if(b & )
ans = (ans % m) * (a % m) % m;
b /= ;
a = (a % m) * (a % m) % m;
}
ans %= m;
return ans;
}
ll niyuan(ll x, ll p)//x关于p的逆元,p为素数
{
return pow(x, p - , p);
}
ll C(ll n, ll m, ll p)//组合数C(n, m) % p
{
if(m > n)
return ;
return fac[n] * niyuan(fac[m] * fac[n - m], p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if(m == )
return ;
return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}

2、n和m较大,但是p为素数的时候

Lucas定理是用来求 c(n,m) mod p,p为素数的值

C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p

也就是Lucas(n,m)%p=Lucas(n/p,m/p)*C(n%p,m%p)%p

求上式的时候,Lucas递归出口为m=0时返回1

求C(n%p, m%p)%p的时候,此处写成C(n, m)%p(p是素数,n和m均小于p)

C(n, m)%p = n! / (m ! * (n - m )!) % p = n! * mod_inverse[m! * (n - m)!, p] % p

由于p是素数,有费马小定理可知,m! * (n - m)! 关于p的逆元就是m! * (n - m)!的p-2次方。

p较小的时候预处理出1-p内所有阶乘%p的值,然后用快速幂求出逆元,就可以求出解。p较大的时候只能逐项求出分母和分子模上p的值,然后通过快速幂求逆元求解。

                      n!
C(n,r) = --------------------
r!∗(n−r)!
ll pow(ll a, ll b, ll m)
{
ll ans = ;
a %= m;
while(b)
{
if(b & )ans = (ans % m) * (a % m) % m;
b /= ;
a = (a % m) * (a % m) % m;
}
ans %= m;
return ans;
}
ll niyuan(ll x, ll p)//x关于p的逆元,p为素数
{
return pow(x, p - , p);
}
ll C(ll n, ll m, ll p)//组合数C(n, m) % p
{
if(m > n)
return ;
ll up = , down = ;//分子分母;
for(int i = n - m + ; i <= n; i++)
up = up * i % p;
for(int i = ; i <= m; i++)
down = down * i % p;
return up * niyuan(down, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if(m == )
return ;
return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}

组合数取模介绍----Lucas定理介绍的更多相关文章

  1. 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数

    typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...

  2. 组合数取模(lucas定理+CRT合并)(AC)

    #include<bits/stdc++.h> #define re register #define int long long using namespace std; ; inlin ...

  3. 组合数取模及Lucas定理

    引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要 ...

  4. bzoj1951 组合数取模 中国剩余定理

    #include<bits/stdc++.h> using namespace std; typedef long long ll; const int a[4]={2,3,4679,35 ...

  5. Codeforces 57C (1-n递增方案数,组合数取模,lucas)

    这个题相当于求从1-n的递增方案数,为C(2*n-1,n); 取模要用lucas定理,附上代码: #include<bits/stdc++.h> using namespace std; ...

  6. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  7. Uva12034 (组合数取模)

    题意:两匹马比赛有三种比赛结果,n匹马比赛的所有可能结果总数 解法: 设答案是f[n],则假设第一名有i个人,有C(n,i)种可能,接下来还有f(n-i)种可能性,因此答案为 ΣC(n,i)f(n-i ...

  8. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  9. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

随机推荐

  1. 利用HttpWebRequest类Post数据至URI

    在与第三方系统进行数据对接时,需要把数据post到对方提供的一个url,然后进行相关处理. 这里可利用HttpWebRequest类,该类位于System.Net命名空间下.它提供了一些属性和方法可以 ...

  2. Python基础-5

    目录 time &datetime模块 random os sys shutil json & picle shelve xml处理 yaml处理 hashlib re正则表达式 模块 ...

  3. ubuntu 14.04编译安装xen4.4总结

    1. 安装环境 操作系统:ubuntu14.04 xen版本:xen4.4 2. 依赖包的安装 在安装xen之前先进行依赖包的安装,在不停得尝试之后,总结出以下需要安装的依赖包. sudo apt-g ...

  4. javascrip总结12:逻辑运算符与等号运算符

    1 逻辑运算符 逻辑运算的结果只有true 或者 false. 1.1 与&&: 两个表达式为true的时候,结果为true. 1.2 或|| 只要有一个表达式为true,结果为tru ...

  5. HYSBZ 1036 树的统计Count (水题树链剖分)

    题意:中文题. 析:就是直接维护一个最大值和一个和,用线段树维护即可,这个题很简单,但是我卡了一晚上,就是在定位的时候,位置直接反过来了,但是样例全过了...真是... 代码如下: #pragma c ...

  6. SynchronizationContext应用

    这个类的应用,官方的说明并不是很多,主要原因是因为微软又出了一些基于SynchronizationContext的类.比如:BackgroundWorker 大家写程序时经常碰到子线程调用UI线程的方 ...

  7. 异常:已捕获: "Error creating context 'spring.root': 未将对象引用设置到对象的实例。" (System.Configuration.ConfigurationErrorsException) 捕获到一个 System.Configuration.ConfigurationErrorsException: "Error creating context 'sp

    查看所指定name的context是否注册成功,以后用此容器来获取其中的object. 常见的使用方式: Application_Start中使用ContextRegistry.GetContext( ...

  8. Oracle大字段(clob)模糊查询优化方法

    对于内容很多的时候clob打字段模糊查询很慢,整理一个小方法: 1,在查询的列上建索引 2,对于要查询的clob字段使用一下语句创建索引   CREATE INDEX idx_zs_info_note ...

  9. pch文件配置出现 Expected unqualified-id 和 Unkown type name 'NSString'

    1.发生的现象 之前代码还是没有报错的,由于某些代码比较常用,就打算配置一个pch文件引入常用的文件 但是引入的时候就出现了报错 2.原因与解决办法 2.1 原因 你引入的文件可能使用到OC与C++混 ...

  10. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...