转载https://www.cnblogs.com/fzl194/p/9095177.html

组合数取模方法总结(Lucas定理介绍)

1.当n,m都很小的时候可以利用杨辉三角直接求。 
C(n,m)=C(n-1,m)+C(n-1,m-1);

const int maxn = 1e5 + ;
ll fac[maxn];//阶乘打表
void init(ll p)//此处的p应该小于1e5,这样Lucas定理才适用
{
fac[] = ;
for(int i = ; i <= p; i++)
fac[i] = fac[i - ] * i % p;
}
ll pow(ll a, ll b, ll m)
{
ll ans = ;
a %= m;
while(b)
{
if(b & )
ans = (ans % m) * (a % m) % m;
b /= ;
a = (a % m) * (a % m) % m;
}
ans %= m;
return ans;
}
ll niyuan(ll x, ll p)//x关于p的逆元,p为素数
{
return pow(x, p - , p);
}
ll C(ll n, ll m, ll p)//组合数C(n, m) % p
{
if(m > n)
return ;
return fac[n] * niyuan(fac[m] * fac[n - m], p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if(m == )
return ;
return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}

2、n和m较大,但是p为素数的时候

Lucas定理是用来求 c(n,m) mod p,p为素数的值

C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p

也就是Lucas(n,m)%p=Lucas(n/p,m/p)*C(n%p,m%p)%p

求上式的时候,Lucas递归出口为m=0时返回1

求C(n%p, m%p)%p的时候,此处写成C(n, m)%p(p是素数,n和m均小于p)

C(n, m)%p = n! / (m ! * (n - m )!) % p = n! * mod_inverse[m! * (n - m)!, p] % p

由于p是素数,有费马小定理可知,m! * (n - m)! 关于p的逆元就是m! * (n - m)!的p-2次方。

p较小的时候预处理出1-p内所有阶乘%p的值,然后用快速幂求出逆元,就可以求出解。p较大的时候只能逐项求出分母和分子模上p的值,然后通过快速幂求逆元求解。

                      n!
C(n,r) = --------------------
r!∗(n−r)!
ll pow(ll a, ll b, ll m)
{
ll ans = ;
a %= m;
while(b)
{
if(b & )ans = (ans % m) * (a % m) % m;
b /= ;
a = (a % m) * (a % m) % m;
}
ans %= m;
return ans;
}
ll niyuan(ll x, ll p)//x关于p的逆元,p为素数
{
return pow(x, p - , p);
}
ll C(ll n, ll m, ll p)//组合数C(n, m) % p
{
if(m > n)
return ;
ll up = , down = ;//分子分母;
for(int i = n - m + ; i <= n; i++)
up = up * i % p;
for(int i = ; i <= m; i++)
down = down * i % p;
return up * niyuan(down, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if(m == )
return ;
return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}

组合数取模介绍----Lucas定理介绍的更多相关文章

  1. 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数

    typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...

  2. 组合数取模(lucas定理+CRT合并)(AC)

    #include<bits/stdc++.h> #define re register #define int long long using namespace std; ; inlin ...

  3. 组合数取模及Lucas定理

    引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要 ...

  4. bzoj1951 组合数取模 中国剩余定理

    #include<bits/stdc++.h> using namespace std; typedef long long ll; const int a[4]={2,3,4679,35 ...

  5. Codeforces 57C (1-n递增方案数,组合数取模,lucas)

    这个题相当于求从1-n的递增方案数,为C(2*n-1,n); 取模要用lucas定理,附上代码: #include<bits/stdc++.h> using namespace std; ...

  6. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  7. Uva12034 (组合数取模)

    题意:两匹马比赛有三种比赛结果,n匹马比赛的所有可能结果总数 解法: 设答案是f[n],则假设第一名有i个人,有C(n,i)种可能,接下来还有f(n-i)种可能性,因此答案为 ΣC(n,i)f(n-i ...

  8. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  9. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

随机推荐

  1. python文件处理os模块

    一.os模块概述 Python os模块包含普遍的操作系统功能.如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的.(一语中的) 二.常用方法 1.os.name 输出字符串指示正在使用的平台 ...

  2. db2 中 SQL判断物理表是否存在、修改表名

    1.db2 中 SQL判断物理表是否存在 SELECT * FROM SYSIBM.SYSTABLES WHERE TID <> 0 AND Name = 'TABLE_NAME' AND ...

  3. IOException while loading persisted sessions: java.io.EOFException

    运行eclipse启动服务器的时候,出现了IOException while loading persisted sessions: java.io.EOFException报错.本以为是代码修改出现 ...

  4. C#向服务器上传文件问题

    最近在写服务器端web上传的接口.但一直报错,上传不上去,后来发现是在分隔符中出现的问题. 错误的写法: var boundary = "---------------" + Da ...

  5. C# return、continue、break

    return 终止当前进程 可用循环判断,验证,等功能 if (ew == v) { PublicControlLib.Class.PublicProperties.ShowSuccess(); re ...

  6. 百度UEditor富文本编辑器去除自动追加p标签

    本篇文章还原了我在遇到这个问题时的解决过程: 找到ueditor.all.js文件,搜索 me.addInputRule(function(root){ 或者直接搜索 //进入编辑器的li要套p标签 ...

  7. .Net Core 项目引用本地类库方式(二)

    上篇文章有详细的介绍.Net Core 项目中引用本地类库通过打包,然后Nugety引用方式,这里再介绍一种引用包的方式

  8. C# 高斯消元项目运用

    C# 高斯消元项目运用 最近项目涉及到一个需求,需要把指定数量的多个商品,混合装入到多个不同型号的箱子中(每种型号的箱子装入商品的种类和个数是固定的).这就涉及到解多元一次方程 针对多元一次方程一般用 ...

  9. Nginx开发HTTP模块入门

    Nginx开发HTTP模块入门 我们以一个最简单的Hello World模块为例,学习Nginx的模块编写.假设我们的模块在nginx配置文件中的指令名称为hello_world,那我们就可以在ngi ...

  10. 多线程《八》线程queue

    一 线程queue queue is especially useful in threaded programming when information must be exchanged safe ...