题意:求每一个子树存在最多颜色的颜色代号和(可重复)

本题是离线统计操作,因此可以直接合并重儿子已达到\(O(nlogn)\)的复杂度

PS.不知道什么是启发式合并的可以这样感受一下:进行树链剖分,分出重儿子和轻儿子,每次离线dfs时保留重儿子得出的贡献,清除轻儿子的贡献并重新遍历

(反正是一种取代树上莫队的简单粗暴玩意,但是效率贼tm好)

唯一不解的小细节是似乎我在轻儿子的撤销操作中更新tmp存在问题,改了另一种写法就A了

想不出反例,求指教

Update:看出来了,是我傻缺..

#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
using namespace std;
const int MAXN = 1e5+11;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int to[MAXN<<1],nxt[MAXN<<1],head[MAXN],tot;
int CLOCK,size[MAXN],st[MAXN],ed[MAXN],pre[MAXN];
int cntVal[MAXN],cntNum[MAXN],tmp,n;
bool vis[MAXN];
ll sum[MAXN],ans[MAXN],c[MAXN];
void init(){
memset(head,-1,sizeof head);
memset(cntVal,0,sizeof cntVal);
memset(cntNum,0,sizeof cntNum);
memset(sum,0,sizeof sum);
memset(vis,0,sizeof vis);
tmp=0;tot=0;CLOCK=0;
}
void add(int u,int v){
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
swap(u,v);
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
}
void prepare(int u,int p){
size[u]=1;
st[u]=++CLOCK;pre[CLOCK]=u;
erep(i,u){
int v=to[i];
if(v==p)continue;
prepare(v,u);
size[u]+=size[v];
}
ed[u]=CLOCK;
}
void dfs(int u,int p,bool keep){
int mx=0,son=-1;
erep(i,u){
int v=to[i];
if(v==p)continue;
if(size[v]>mx){
mx=size[v];
son=v;
}
}
erep(i,u){
int v=to[i];
if(v==p)continue;
if(v==son) continue;
dfs(v,u,0);
}
if(~son) dfs(son,u,1);
erep(i,u){
int v=to[i];
if(v==p)continue;
if(v==son)continue;
rep(j,st[v],ed[v]){
int o=pre[j];
sum[cntVal[c[o]]]-=c[o];
cntNum[cntVal[c[o]]]--;
cntVal[c[o]]++;
cntNum[cntVal[c[o]]]++;
sum[cntVal[c[o]]]+=c[o];
if(tmp<cntVal[c[o]]) tmp=cntVal[c[o]];
}
}
sum[cntVal[c[u]]]-=c[u];
cntNum[cntVal[c[u]]]--;
cntVal[c[u]]++;
cntNum[cntVal[c[u]]]++;
sum[cntVal[c[u]]]+=c[u];
if(tmp<cntVal[c[u]]) tmp=cntVal[c[u]]; ans[u]=sum[tmp]; if(!keep){
rep(i,st[u],ed[u]){
int v=pre[i];
sum[cntVal[c[v]]]-=c[v];
cntNum[cntVal[c[v]]]--;
//if(tmp==cntVal[c[v]]&&cntNum[cntVal[c[v]]]==0) tmp--;
cntVal[c[v]]--;
cntNum[cntVal[c[v]]]++;
sum[cntVal[c[v]]]+=c[v];
if(cntNum[tmp]==0) tmp--;
}
}
}
int main(){
while(cin>>n){
init();
rep(i,1,n) c[i]=read();
rep(i,1,n) if(!vis[c[i]]){
sum[0]+=c[i];
cntNum[0]++;
vis[c[i]]=1;
}
rep(i,1,n-1){
int u=read();
int v=read();
add(u,v);
}
prepare(1,-1);
dfs(1,-1,0);
rep(i,1,n){
if(i==n) println(ans[i]);
else printbk(ans[i]);
}
}
return 0;
}

Codeforces - 600E 树上启发式合并的更多相关文章

  1. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

  2. Codeforces 208E - Blood Cousins(树上启发式合并)

    208E - Blood Cousins 题意 给出一棵家谱树,定义从 u 点向上走 k 步到达的节点为 u 的 k-ancestor.多次查询,给出 u k,问有多少个与 u 具有相同 k-ance ...

  3. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

  4. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  5. CF EDU - E. Lomsat gelral 树上启发式合并

    学习:http://codeforces.com/blog/entry/44351 E. Lomsat gelral 题意: 给定一个以1为根节点的树,每个节点都有一个颜色,问每个节点的子树中,颜色最 ...

  6. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  7. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  8. hdu6191(树上启发式合并)

    hdu6191 题意 给你一棵带点权的树,每次查询 \(u\) 和 \(x\) ,求以 \(u\) 为根结点的子树上的结点与 \(x\) 异或后最大的结果. 分析 看到子树,直接上树上启发式合并,看到 ...

  9. csu1811(树上启发式合并)

    csu1811 题意 给定一棵树,每个节点有颜色,每次仅删掉第 \(i\) 条边 \((a_i, b_i)\) ,得到两颗树,问两颗树节点的颜色集合的交集. 分析 转化一下,即所求答案为每次删掉 \( ...

随机推荐

  1. Java 基于spring 暴露接口 供外部调用

    在springmvc的配置文件添加创建如下的bean: <!-- 暴露一个webService连接 --> <bean class="org.springframework ...

  2. 38-最长公共子序列(dp)

    最长公共子序列 https://www.nowcoder.com/practice/c996bbb77dd447d681ec6907ccfb488a?tpId=49&&tqId=293 ...

  3. 类型或命名空间名称“Interop”在类或命名空间“Microsoft.Office”中不存在(是否缺少程序集引用?)

    准备用C#编写Web程序,生成Excel报表,在使用下面语句时报错. using Microsoft.Office.Interop.Excel; 报错信息:类型或命名空间名称“Interop”在类或命 ...

  4. algorithm notes

    1.算法可视化 https://visualgo.net/en

  5. win32 多线程 (五)Event

    Event是内核对象,他可以分为自动和手动两种模式. HANDLE CreateEvent( LPSECURITY_ATTRIBUTES lpEventAttributes, BOOL bManual ...

  6. Luogu 3242 [HNOI2015]接水果

    BZOJ4009 权限题 真的不想再写一遍了 大佬blog 假设有果实$(x, y)$,询问$(a, b)$,用$st_i$表示$i$的$dfs$序,用$ed_i$表示所有$i$的子树搜完的$dfs$ ...

  7. Browsersync 简介 and 使用

    简介 省时的浏览器同步测试工具,Browsersync能让浏览器实时.快速响应您的文件更改(html.js.css.sass.less等)并自动刷新页面. 曾经我们每改一次的代码,都需要手动去刷新一次 ...

  8. using JSTL

    http://docs.oracle.com/javaee/5/tutorial/doc/bnake.html JSTL(JSP Standard Tag Library)

  9. ubuntu14.04LTS下制作安装启动U盘

    ubuntu自带的启动U盘制作工具在我的非UEFI电脑上无法启动,找到一个国产的好用东西:深度deepin-boot-maker. 下载地址(官方百度盘):点击下载 用起来也很简单,只需要选择下载好的 ...

  10. C# -- 泛型(1)

    简介: 先看看泛型的概念--“通过参数化类型来实现在同一份代码上操作多种数据类型.利用“参数化类型”将类型抽象化,从而实现灵活的复用”. 很多初学者在刚开始接触泛型的时候会比较难理解 “泛型” 在这里 ...