题意:求每一个子树存在最多颜色的颜色代号和(可重复)

本题是离线统计操作,因此可以直接合并重儿子已达到\(O(nlogn)\)的复杂度

PS.不知道什么是启发式合并的可以这样感受一下:进行树链剖分,分出重儿子和轻儿子,每次离线dfs时保留重儿子得出的贡献,清除轻儿子的贡献并重新遍历

(反正是一种取代树上莫队的简单粗暴玩意,但是效率贼tm好)

唯一不解的小细节是似乎我在轻儿子的撤销操作中更新tmp存在问题,改了另一种写法就A了

想不出反例,求指教

Update:看出来了,是我傻缺..

#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
using namespace std;
const int MAXN = 1e5+11;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int to[MAXN<<1],nxt[MAXN<<1],head[MAXN],tot;
int CLOCK,size[MAXN],st[MAXN],ed[MAXN],pre[MAXN];
int cntVal[MAXN],cntNum[MAXN],tmp,n;
bool vis[MAXN];
ll sum[MAXN],ans[MAXN],c[MAXN];
void init(){
memset(head,-1,sizeof head);
memset(cntVal,0,sizeof cntVal);
memset(cntNum,0,sizeof cntNum);
memset(sum,0,sizeof sum);
memset(vis,0,sizeof vis);
tmp=0;tot=0;CLOCK=0;
}
void add(int u,int v){
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
swap(u,v);
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
}
void prepare(int u,int p){
size[u]=1;
st[u]=++CLOCK;pre[CLOCK]=u;
erep(i,u){
int v=to[i];
if(v==p)continue;
prepare(v,u);
size[u]+=size[v];
}
ed[u]=CLOCK;
}
void dfs(int u,int p,bool keep){
int mx=0,son=-1;
erep(i,u){
int v=to[i];
if(v==p)continue;
if(size[v]>mx){
mx=size[v];
son=v;
}
}
erep(i,u){
int v=to[i];
if(v==p)continue;
if(v==son) continue;
dfs(v,u,0);
}
if(~son) dfs(son,u,1);
erep(i,u){
int v=to[i];
if(v==p)continue;
if(v==son)continue;
rep(j,st[v],ed[v]){
int o=pre[j];
sum[cntVal[c[o]]]-=c[o];
cntNum[cntVal[c[o]]]--;
cntVal[c[o]]++;
cntNum[cntVal[c[o]]]++;
sum[cntVal[c[o]]]+=c[o];
if(tmp<cntVal[c[o]]) tmp=cntVal[c[o]];
}
}
sum[cntVal[c[u]]]-=c[u];
cntNum[cntVal[c[u]]]--;
cntVal[c[u]]++;
cntNum[cntVal[c[u]]]++;
sum[cntVal[c[u]]]+=c[u];
if(tmp<cntVal[c[u]]) tmp=cntVal[c[u]]; ans[u]=sum[tmp]; if(!keep){
rep(i,st[u],ed[u]){
int v=pre[i];
sum[cntVal[c[v]]]-=c[v];
cntNum[cntVal[c[v]]]--;
//if(tmp==cntVal[c[v]]&&cntNum[cntVal[c[v]]]==0) tmp--;
cntVal[c[v]]--;
cntNum[cntVal[c[v]]]++;
sum[cntVal[c[v]]]+=c[v];
if(cntNum[tmp]==0) tmp--;
}
}
}
int main(){
while(cin>>n){
init();
rep(i,1,n) c[i]=read();
rep(i,1,n) if(!vis[c[i]]){
sum[0]+=c[i];
cntNum[0]++;
vis[c[i]]=1;
}
rep(i,1,n-1){
int u=read();
int v=read();
add(u,v);
}
prepare(1,-1);
dfs(1,-1,0);
rep(i,1,n){
if(i==n) println(ans[i]);
else printbk(ans[i]);
}
}
return 0;
}

Codeforces - 600E 树上启发式合并的更多相关文章

  1. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

  2. Codeforces 208E - Blood Cousins(树上启发式合并)

    208E - Blood Cousins 题意 给出一棵家谱树,定义从 u 点向上走 k 步到达的节点为 u 的 k-ancestor.多次查询,给出 u k,问有多少个与 u 具有相同 k-ance ...

  3. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

  4. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  5. CF EDU - E. Lomsat gelral 树上启发式合并

    学习:http://codeforces.com/blog/entry/44351 E. Lomsat gelral 题意: 给定一个以1为根节点的树,每个节点都有一个颜色,问每个节点的子树中,颜色最 ...

  6. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  7. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  8. hdu6191(树上启发式合并)

    hdu6191 题意 给你一棵带点权的树,每次查询 \(u\) 和 \(x\) ,求以 \(u\) 为根结点的子树上的结点与 \(x\) 异或后最大的结果. 分析 看到子树,直接上树上启发式合并,看到 ...

  9. csu1811(树上启发式合并)

    csu1811 题意 给定一棵树,每个节点有颜色,每次仅删掉第 \(i\) 条边 \((a_i, b_i)\) ,得到两颗树,问两颗树节点的颜色集合的交集. 分析 转化一下,即所求答案为每次删掉 \( ...

随机推荐

  1. conda create -n AlphaPose2018 python=2.7

    conda create -n AlphaPose2018 python=2.7Solving environment: done ==> WARNING: A newer version of ...

  2. Tensorflow学习(练习)—使用inception做图像识别

    import osimport tensorflow as tfimport numpy as npimport re from PIL import Imageimport matplotlib.p ...

  3. msql 计算连续签到天数

    刚刚写了一个签到计算天数的sql, 记录下来. 思路如下: 获取当前签到的最后时间(今天或昨天), 定义一个变量@i 对签到时间进行天数自减, 然后查询出当前记录签到时间是否与自减后的时间匹配.   ...

  4. ssh时传递环境变量

    设置要传递的变量: -o SendEnv=Varname 但是不是每个都能传,受服务器上sshd_config里的下面两个选项的控制: AcceptEnv and PermitUserEnvironm ...

  5. 数据库 MySQL 之 表操作、存储引擎

    数据库 MySQL 之 表操作.存储引擎 浏览目录 创建(复制) 删除 修改 查询 存储引擎介绍 一.创建(复制) 1.语法: 1 2 3 4 5 CREATE TABLE 表名(     字段名1 ...

  6. Linux 下安装Yaf扩展

    1.在官网下载了yaf扩展包 yaf-3.0.3.tgz 2.开始安装yaf扩展 tar zxvf yaf-3.0.3.tgz cd yaf-3.0.3 phpize ./configure --wi ...

  7. 《the art of software testing》第四章 测试用例的设计

    白盒测试 逻辑覆盖测试: 逻辑覆盖是以程序内部的逻辑结构为基础的设计测试用例的技术.它属白盒测试.白盒测试的测试方法有代码检查法.静态结构分析法.静态质量度量法.逻辑覆盖法.基本路径测试法.域测试.符 ...

  8. 通过vb.net 和NPOI实现对excel的读操作

    通过vb.net 和NPOI实现对excel的读操作,很久很久前用过vb,这次朋友的代码是vb.net写的需要一个excel的操作, 就顾着着实现功能了,大家凑合着看吧 Option Explicit ...

  9. XE StringGrid应用(G1属性触发G2)

    unit UnitMain; interface uses System.SysUtils, System.Types, System.UITypes, System.Classes, System. ...

  10. DataType--类型基础

    数据类型数据的定义在各种场合均不一样,数据的载体也不一样,数据的表现方式和传递方式也不一样,数据的处理方式也不一样,数据库不可能处理所有形式的数据,因此必须规范数据,按照类型划分和处理. 连续和离散( ...