A - TOYS(POJ - 2318) 计算几何的一道基础题
Calculate the number of toys that land in each bin of a partitioned toy box.
计算每一个玩具箱里面玩具的数量
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the
toys get mixed up, and it is impossible for John to find his favorite toys.
妈妈和爸爸有一个问题,他们的孩子约翰从来没有在玩完玩具后把玩具都放好,他们有了约翰一个矩形的箱子用来放他的玩具,但是约翰很叛逆,他服从了他父母,不过只是简单地把玩具扔进了箱子里。所有的玩具都搞混了,并且约翰不可能找到他最喜欢的玩具。
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example
toy box.
约翰的父母想出了如下的注意,他们在箱子里放了纸板进行分区,即使约翰不停地把玩具扔进箱子里,至少玩具被扔进不同的垃圾箱并保持分开,下图展现了样例玩具箱的俯视图。
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
对于这个问题,当约翰把玩具扔进箱子里时,你被要求确定有多少个玩具被扔进了分区。
Input
The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates
of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2).
You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of
the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.
输入文件包含一个或多个问题,第一行是第一个问题包含6个数,n,m,x1,x2,y1,y2,纸板分区的数目为n(0 < n <= 5000),玩具的数量是m(0<m<5000),箱子左上角的坐标为(x1,y1),右下角的坐标为(x2,y2)。以下N行,每行包含两个整数,Ui Li,表示第i个纸板分区的结束是在坐标(UI,y1)和(Li,y2)。你可以假设纸板分区彼此不相交,它们是从左到右按排序顺序指定的。接下来的m行每行包含两个整数,Xj
Yj指定该位置被第j个玩具落在了箱子里,玩具位置的顺序是随机的。你可以假设没有玩具会准确地落在硬纸板的隔板上或盒子的外面(就是所有玩具肯定都会掉进箱子里面),输入由一个单0组成的行终止。
Output
The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered
from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.
每个问题的输出将是玩具箱中每个独立的箱子的一行。对于每一个箱子,打印它的箱子的号码,后面是冒号和一个空格,后面跟着丢进箱子的玩具数量。箱编号从0(最左边箱子)N(最右边的箱子)。用一条空行分隔不同问题的输出。
5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0
Sample Output
0: 2
1: 1
2: 1
3: 1
4: 0
5: 1
0: 2
1: 2
2: 2
3: 2
4: 2
Hint
如图所示,落在盒子边界上的玩具在盒子里
纠结了很久玩具在隔板上怎么算,后发现题中说不会出现这样的情况
剩下的就很简单了,二分也很基础,重点就是计算几何里面一个知识点,已知2点,该2点连线和另外一个已知点的位置的问题,我手写了一下,有错误的话希望大家指正
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
struct point//此结构体用来记录坐标
{
int x,y;
};
struct Node//此结构体用来记录隔板上下的点
{
point a,b;
}A[5010];
int pos[5010];
bool judge(int xx,int yy,int mid)
{
int ans=(A[mid].a.x-xx)*(A[mid].b.y-yy)-(A[mid].a.y-yy)*(A[mid].b.x-xx);//本题判断核心
//判断已知的两点坐标的连线和另外一个已知点的位置,如果ans>0,则已知点在连线的右侧,否则在连线的左侧
if(ans<0)
return false;
return true;
}
void search(int xx,int yy,int n)
{
int left=0,right=n-1;
while(left<=right)
{
int mid=(left+right)>>1;//此处的>>1可以等价理解为/2
//int mid=(left+right)/2;
if(judge(xx,yy,mid))
{
left=mid+1;//进入此条件说明点的mid所在的那条线的右侧
}
else
{
right=mid-1;//进入此条件说明点的mid所在的那条线的左侧
}
}
pos[left]++;//记录不同箱子所得到的玩具数量
}
int main()
{
//freopen("input.txt","r",stdin);
int n,m,i,j,x1,x2,y1,y2;
while(scanf("%d",&n),n)//多组输入,且n不为0
{
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
for(i=0;i<n;++i)
{
int xd,xu;
scanf("%d%d",&xu,&xd);
A[i].a.x=xu;
A[i].a.y=y1;
A[i].b.x=xd;
A[i].b.y=y2;
}//存储了隔板的位置
memset(pos,0,sizeof(pos));
for(i=0;i<m;++i)
{
int xx,yy;
scanf("%d%d",&xx,&yy);
search(xx,yy,n);//进入search函数,分析该玩具被扔进了第几号箱子里
}
for(i=0;i<=n;++i)
printf("%d: %d\n",i,pos[i]);
printf("\n");
}
return 0;
}
A - TOYS(POJ - 2318) 计算几何的一道基础题的更多相关文章
- TOYS POJ 2318 计算几何 叉乘的应用
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15060 Accepted: 7270 Description Calc ...
- poj 2955 Brackets (区间dp基础题)
We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...
- TOYS - POJ 2318(计算几何,叉积判断)
题目大意:给你一个矩形的左上角和右下角的坐标,然后这个矩形有 N 个隔板分割成 N+1 个区域,下面有 M 组坐标,求出来每个区域包含的坐标数. 分析:做的第一道计算几何题目....使用叉积判断方 ...
- poj 2239 二分图最大匹配,基础题
1.poj 2239 Selecting Courses 二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...
- POJ 1515 Street Directions --一道连通题的双连通和强连通两种解法
题意:将一个无向图中的双向边改成单向边使图强连通,问最多能改多少条边,输出改造后的图. 分析: 1.双连通做法: 双连通图转强连通图的算法:对双连通图进行dfs,在搜索的过程中就能按照搜索的方向给所有 ...
- poj 3254(状态压缩基础题)
题意:就是你给一个n行m列的矩阵,矩阵里的元素由0和1组成,1代表肥沃的土地可以种植作物,0则不可以种植作物,并且相邻的土地不能同时种植作物,问你有多少种种植方案. 分析:这是我做的第一道状态压缩dp ...
- POJ 2186 tarjan+缩点 基础题
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 37111 Accepted: 15124 De ...
- 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)
TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...
- POJ 2318 TOYS(叉积+二分)
题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...
随机推荐
- Ubuntu下libpcap安装步骤
第一步,先安装GCC ,一般都会自动安装 sudo apt-get install build-essential 第二步,GNU M4可以从此处ftp.gnu.org/gnu/m4/ 下载 sudo ...
- git 的使用方法
git 的使用有3个主要步骤: 1.1 工作区域操作: 在自己的git账号下构建一个工作目录, 并往工作目录里添加文件内容(cp /root/data/VIP_Amount_prediction/* ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- 20169219 实验四Android程序设计
一.实现Linux下dc的功能,计算后缀表达式的值 public int evaluate(String expr) { int op1, op2, result = 0; String token; ...
- Oracle的列操作(增加列,修改列,删除列),包括操作多列
增加一列: alter table emp4 add test varchar2(10); 修改一列: alter table emp4 modify test varchar2(20); 删除一列: ...
- <%@ include > 与< jsp:include >
include指令表示在JSP编译时插入一个包含文本或者代码的文件,把文件中的文本静态地包含过去.也就是说,会把被包含的页面拷贝到包含的页面中指令所在的位置. 语法格式:<%@ include ...
- android开关控件Switch和ToggleButton
序:今天项目中用到了开关按钮控件,查阅了一些资料特地写了这篇博客记录下. 1.Switch <Switch android:id="@+id/bt" android:layo ...
- .net 序列化 与反序列化 Serializable
序列化:序列化指的是 将对象 通过流的方式 保存为一个文件. 反序列化则是将该文件还原成 对象的过程. 序列化的作用:序列化可以跨语言跨平台 传输数据,将某一对象序列化成通用的文件格式在进行传输. 比 ...
- Snapshot--使用脚本创建快照
USE master; SET NOCOUNT ON; GO ); --数据库名 );--快照名 );--保存路径 SET @dbname='DB1'; SET @snapname='DB1_SNAP ...
- 和Webbrowser进行简单交互
作为第一篇,简单的控件使用就不说了. 直接从简单的交互开始吧! C#使用网页中已有的js函数 webBrowser.Document.InvokeScript("Stop");// ...