A - TOYS(POJ - 2318) 计算几何的一道基础题
Calculate the number of toys that land in each bin of a partitioned toy box.
计算每一个玩具箱里面玩具的数量
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the
toys get mixed up, and it is impossible for John to find his favorite toys.
妈妈和爸爸有一个问题,他们的孩子约翰从来没有在玩完玩具后把玩具都放好,他们有了约翰一个矩形的箱子用来放他的玩具,但是约翰很叛逆,他服从了他父母,不过只是简单地把玩具扔进了箱子里。所有的玩具都搞混了,并且约翰不可能找到他最喜欢的玩具。
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example
toy box.
约翰的父母想出了如下的注意,他们在箱子里放了纸板进行分区,即使约翰不停地把玩具扔进箱子里,至少玩具被扔进不同的垃圾箱并保持分开,下图展现了样例玩具箱的俯视图。
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
对于这个问题,当约翰把玩具扔进箱子里时,你被要求确定有多少个玩具被扔进了分区。
Input
The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates
of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2).
You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of
the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.
输入文件包含一个或多个问题,第一行是第一个问题包含6个数,n,m,x1,x2,y1,y2,纸板分区的数目为n(0 < n <= 5000),玩具的数量是m(0<m<5000),箱子左上角的坐标为(x1,y1),右下角的坐标为(x2,y2)。以下N行,每行包含两个整数,Ui Li,表示第i个纸板分区的结束是在坐标(UI,y1)和(Li,y2)。你可以假设纸板分区彼此不相交,它们是从左到右按排序顺序指定的。接下来的m行每行包含两个整数,Xj
Yj指定该位置被第j个玩具落在了箱子里,玩具位置的顺序是随机的。你可以假设没有玩具会准确地落在硬纸板的隔板上或盒子的外面(就是所有玩具肯定都会掉进箱子里面),输入由一个单0组成的行终止。
Output
The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered
from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.
每个问题的输出将是玩具箱中每个独立的箱子的一行。对于每一个箱子,打印它的箱子的号码,后面是冒号和一个空格,后面跟着丢进箱子的玩具数量。箱编号从0(最左边箱子)N(最右边的箱子)。用一条空行分隔不同问题的输出。
5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0
Sample Output
0: 2
1: 1
2: 1
3: 1
4: 0
5: 1
0: 2
1: 2
2: 2
3: 2
4: 2
Hint
如图所示,落在盒子边界上的玩具在盒子里
纠结了很久玩具在隔板上怎么算,后发现题中说不会出现这样的情况
剩下的就很简单了,二分也很基础,重点就是计算几何里面一个知识点,已知2点,该2点连线和另外一个已知点的位置的问题,我手写了一下,有错误的话希望大家指正
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
struct point//此结构体用来记录坐标
{
int x,y;
};
struct Node//此结构体用来记录隔板上下的点
{
point a,b;
}A[5010];
int pos[5010];
bool judge(int xx,int yy,int mid)
{
int ans=(A[mid].a.x-xx)*(A[mid].b.y-yy)-(A[mid].a.y-yy)*(A[mid].b.x-xx);//本题判断核心
//判断已知的两点坐标的连线和另外一个已知点的位置,如果ans>0,则已知点在连线的右侧,否则在连线的左侧
if(ans<0)
return false;
return true;
}
void search(int xx,int yy,int n)
{
int left=0,right=n-1;
while(left<=right)
{
int mid=(left+right)>>1;//此处的>>1可以等价理解为/2
//int mid=(left+right)/2;
if(judge(xx,yy,mid))
{
left=mid+1;//进入此条件说明点的mid所在的那条线的右侧
}
else
{
right=mid-1;//进入此条件说明点的mid所在的那条线的左侧
}
}
pos[left]++;//记录不同箱子所得到的玩具数量
}
int main()
{
//freopen("input.txt","r",stdin);
int n,m,i,j,x1,x2,y1,y2;
while(scanf("%d",&n),n)//多组输入,且n不为0
{
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
for(i=0;i<n;++i)
{
int xd,xu;
scanf("%d%d",&xu,&xd);
A[i].a.x=xu;
A[i].a.y=y1;
A[i].b.x=xd;
A[i].b.y=y2;
}//存储了隔板的位置
memset(pos,0,sizeof(pos));
for(i=0;i<m;++i)
{
int xx,yy;
scanf("%d%d",&xx,&yy);
search(xx,yy,n);//进入search函数,分析该玩具被扔进了第几号箱子里
}
for(i=0;i<=n;++i)
printf("%d: %d\n",i,pos[i]);
printf("\n");
}
return 0;
}
A - TOYS(POJ - 2318) 计算几何的一道基础题的更多相关文章
- TOYS POJ 2318 计算几何 叉乘的应用
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15060 Accepted: 7270 Description Calc ...
- poj 2955 Brackets (区间dp基础题)
We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...
- TOYS - POJ 2318(计算几何,叉积判断)
题目大意:给你一个矩形的左上角和右下角的坐标,然后这个矩形有 N 个隔板分割成 N+1 个区域,下面有 M 组坐标,求出来每个区域包含的坐标数. 分析:做的第一道计算几何题目....使用叉积判断方 ...
- poj 2239 二分图最大匹配,基础题
1.poj 2239 Selecting Courses 二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...
- POJ 1515 Street Directions --一道连通题的双连通和强连通两种解法
题意:将一个无向图中的双向边改成单向边使图强连通,问最多能改多少条边,输出改造后的图. 分析: 1.双连通做法: 双连通图转强连通图的算法:对双连通图进行dfs,在搜索的过程中就能按照搜索的方向给所有 ...
- poj 3254(状态压缩基础题)
题意:就是你给一个n行m列的矩阵,矩阵里的元素由0和1组成,1代表肥沃的土地可以种植作物,0则不可以种植作物,并且相邻的土地不能同时种植作物,问你有多少种种植方案. 分析:这是我做的第一道状态压缩dp ...
- POJ 2186 tarjan+缩点 基础题
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 37111 Accepted: 15124 De ...
- 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)
TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...
- POJ 2318 TOYS(叉积+二分)
题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...
随机推荐
- IP协议、ARP协议等之温故知新
今天才知道: 1.IP协议的固定部分长度为20字节.(貌似有一家运维工程师面试我的时候,问过我这个问题呢.) 2.IP数据包首部中的协议?? 答:协议:占8位,指出此数据报携带的数据使用何种协议以便目 ...
- jquery中children()
- VS code docker 调试 asp.net core
前言 .net core的诞生就是为了解决跨平台的事情的,所以.net core app运行在linux.macOS.docker上也不是什么新鲜事了. 相信已经有不少.net core的项目已经部署 ...
- 9.python 系统批量运维管理器之Fabric模块
前面介绍了paramiko,pexpect模块,今天来说比较适合大型应用自动化部署的模块,或者执行系统命令的模块Fabric. Fabric 是一个 Python 的库,同时它也是一个命令行工具.它提 ...
- Python基础入门-数据类型
一.变量 1)变量定义 在python中,我们可以把变量理解为一个值,变量是一个标签名,变量是有对应的一个值. name = 100(name是变量名 = 号是赋值号100是变量的值) 2)变量赋值 ...
- Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)
https://cs.stanford.edu/people/karpathy/deepimagesent/ Abstract We present a model that generates na ...
- 国外物联网平台(7):FogHorn
国外物联网平台(7) ——FogHorn 马智 引言: 据外媒在本月20日报道,硅谷初创公司FogHorn正在与谷歌合作以简化工业物联网应用的部署.本文对FogHorn的技术.产品.应用和生态进行了分 ...
- Server Sql 多表查询、子查询和分页
一.多表查询:根据特定的连接条件从不同的表中获取所需的数据 多表查询语法: SELECT table1.column, table2.column FROM table1, table2 WHERE ...
- Castle Windsor
让我们从Web API的集成点开始,它们是IDependencyResolver和IDependencyScope接口.IDependencyResolver和其他接口的名称可能与MVC中的接口相同, ...
- shipyard
https://www.ivankrizsan.se/2016/07/10/managing-containers-shipyard/ kubernetes中文社区:https://www.kuber ...