挺有意思的一道题

要会运用一些常见的位运算操作进行优化

题目的本质就是要求下面的式子

\(dp[i][j+1]=(dp[i-1][j]+dp[i][j]) \mod 2\)

(第\(i\)个字符在\(j\)秒时的状态,1要特判)

对于1与0的乘法运算其实与&一致

(按道理OJ应该自己会优化的吧。。)

/*H E A D*/
struct Matrix{
ll mt[111][111],r,c;
void init(int rr,int cc,bool flag=0){
r=rr;c=cc;
memset(mt,0,sizeof mt);
if(flag) rep(i,1,r) mt[i][i]=1;
}
Matrix operator * (const Matrix &rhs)const{
Matrix ans; ans.init(r,rhs.c);
rep(i,1,r){
rep(j,1,rhs.c){
int t=max(r,rhs.c);
rep(k,1,t){
ans.mt[i][j]+=(mt[i][k]&rhs.mt[k][j]);
ans.mt[i][j]=ans.mt[i][j]&1;
}
}
}
return ans;
}
};
Matrix fpw(Matrix A,ll n){
Matrix ans;ans.init(A.r,A.c,1);
while(n){
if(n&1) ans=ans*A;
n>>=1;
A=A*A;
}
return ans;
}
ll n;
char str[112];
int main(){
while(~iin(n)){
s1(str);
int len = strlen(str+1);
Matrix A; A.init(len,len);
rep(i,2,len) A.mt[i][i-1]=A.mt[i][i]=1;
A.mt[1][1]=A.mt[1][len]=1;
Matrix b; b.init(len,1);
rep(i,1,len) b.mt[i][1]=str[i]-'0';
Matrix res=fpw(A,n); res=res*b;
rep(i,1,len) str[i]=res.mt[i][1]+'0';
printf("%s\n",str+1);
}
return 0;
}

HDU - 2276 位运算矩阵快速幂的更多相关文章

  1. [BZOJ4851][JSOI2016]位运算[矩阵快速幂]

    题意 给定长度为 \(\rm |S|\) 的 \(\rm 01\) 串并将其倍长 \(k\) 次得到一个 \(\rm|S|\times k\) 位的二进制数 \(R\) ,求有多少种在 \([0,R- ...

  2. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  3. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  4. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  5. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  6. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  7. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  8. 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...

  9. HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others)    ...

随机推荐

  1. 680. Valid Palindrome II 对称字符串-可删字母版本

    [抄题]: Given a non-empty string s, you may delete at most one character. Judge whether you can make i ...

  2. SpringMVC第二天

    SpringMVC第二天   框架课程 1. 课程计划 1.高级参数绑定 a) 数组类型的参数绑定 b) List类型的绑定 2.@RequestMapping注解的使用 3.Controller方法 ...

  3. Apache fcgistarter命令

    一.简介 fcgistarter命令用于启动FastCGI程序. 二.语法 fcgistarter -c command -p port [ -i interface ] -N num 参考:http ...

  4. CSS--抽屉(dig.chouti.com)页面

    一.设置整体页面宽度 一般写个样式命名为.d{}设置整体页面指定宽度和居中,京东命名为.w{},bootstrap里命名为.container{} 1 2 3 4 5 6 7 8 9 10 11 12 ...

  5. Linux网络编程IPv4和IPv6的inet_addr、inet_aton、inet_pton等函数小结(转)

    原文:http://blog.csdn.net/ithomer/article/details/6100734 知识背景: 210.25.132.181属于IP地址的ASCII表示法,也就是字符串形式 ...

  6. WOX快速搜索

    WOX wox和mac上的Aflred类似,虽然在功能上稍有逊色,但是还是可以给我们使用windows电脑带来很多福利.首先你不需要在桌面放一堆应用软件的快捷方式,桌面可以非常干净整洁,想要打开某个应 ...

  7. mobiscroll_2.15.1

    var opt_sex = { theme: 'ios', lang: 'zh', formatValue: function (d) { return d.join(','); }, customW ...

  8. rsync服务搭建--2018.5.8 [优化后最终版]

    2018年5月8日 22:09:38 第一步配置基础环境(按照自己的规划配置并非每人的环境都一致) 第一台服务器(RSYNC服务器): rsync外网地址:10.0.0.41  rsync内网地址:1 ...

  9. Ajax GET

    $ajax的post请求提交方式: Controller: @RequestMapping("/emps") @ResponseBody public Msg getEmps(@R ...

  10. Thread Group(线程组)

    线程组,可以理解用户池,用来产生线程(用户),每一个线程代表一个用户,在使用JMeter进行性能测试过程中,经常需要模拟多个用户进行测试,可以通过设置线程数代表多少个用户,通常一个线程组就代表一个测试 ...