学习笔记CB005:关键词、语料提取
关键词提取。pynlpir库实现关键词提取。
# coding:utf-8
import sys
import importlib
importlib.reload(sys)
import pynlpir
pynlpir.open()
s = '怎么才能把电脑里的垃圾文件删除'
key_words = pynlpir.get_key_words(s, weighted=True)
for key_word in key_words:
print(key_word[0], 't', key_word[1])
pynlpir.close()
百度接口:https://www.baidu.com/s?wd=机器学习 数据挖掘 信息检索
安装scrapy pip install scrapy。创建scrapy工程 scrapy startproject baidu_search。做抓取器,创建baidu_search/baidu_search/spiders/baidu_search.py文件。
# coding:utf-8
import sys
import importlib
importlib.reload(sys)
import scrapy
class BaiduSearchSpider(scrapy.Spider):
name = "baidu_search"
allowed_domains = ["baidu.com"]
start_urls = [
"https://www.baidu.com/s?wd=电脑 垃圾 文件 删除"
]
def parse(self, response):
filename = "result.html"
with open(filename, 'wb') as f:
f.write(response.body)
修改settings.py文件,ROBOTSTXT_OBEY = False,USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36' ,DOWNLOAD_TIMEOUT = 5 ,
进入baidu_search/baidu_search/目录,scrapy crawl baidu_search 。生成result.html,正确抓取网页。
语料提取。搜索结果只是索引。真正内容需进入链接。分析抓取结果,链接嵌在class=c-container Div h3 a标签 href属性。url添加到抓取队列抓取。提取正文,去掉标签,保存摘要。提取url时,提取标题和摘要,scrapy.Request meta传递到处理函数parse_url,抓取完成后能接到这两个值,提取content。完整数据:url、title、abstract、content。
# coding:utf-8
import sys
import importlib
importlib.reload(sys)
import scrapy
from scrapy.utils.markup import remove_tags
class BaiduSearchSpider(scrapy.Spider):
name = "baidu_search"
allowed_domains = ["baidu.com"]
start_urls = [
"https://www.baidu.com/s?wd=电脑 垃圾 文件 删除"
]
def parse(self, response):
# filename = "result.html"
# with open(filename, 'wb') as f:
# f.write(response.body)
hrefs = response.selector.xpath('//div[contains(@class, "c-container")]/h3/a/@href').extract()
# for href in hrefs:
# print(href)
# yield scrapy.Request(href, callback=self.parse_url)
containers = response.selector.xpath('//div[contains(@class, "c-container")]')
for container in containers:
href = container.xpath('h3/a/@href').extract()[0]
title = remove_tags(container.xpath('h3/a').extract()[0])
c_abstract = container.xpath('div/div/div[contains(@class, "c-abstract")]').extract()
abstract = ""
if len(c_abstract) > 0:
abstract = remove_tags(c_abstract[0])
request = scrapy.Request(href, callback=self.parse_url)
request.meta['title'] = title
request.meta['abstract'] = abstract
yield request
def parse_url(self, response):
print(len(response.body))
print("url:", response.url)
print("title:", response.meta['title'])
print("abstract:", response.meta['abstract'])
content = remove_tags(response.selector.xpath('//body').extract()[0])
print("content_len:", len(content))
参考资料:
《Python 自然语言处理》
http://www.shareditor.com/blogshow/?blogId=43
http://www.shareditor.com/blogshow?blogId=76
欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi
学习笔记CB005:关键词、语料提取的更多相关文章
- IOS学习笔记之关键词@dynamic
IOS学习笔记之关键词@dynamic @dynamic这个关键词,通常是用不到的. 它与@synthesize的区别在于: 使用@synthesize编译器会确实的产生getter和setter方法 ...
- ArcGIS案例学习笔记2_1_山顶点提取最大值提取
ArcGIS案例学习笔记2_1_山顶点提取最大值提取 计划时间:第二天上午 目的:最大值提取 教程:Pdf page=343 数据:chap8/ex5/dem.tif 背景知识:等高线种类 基本等高线 ...
- GIS案例学习笔记-明暗等高线提取地理模型构建
GIS案例学习笔记-明暗等高线提取地理模型构建 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:针对数字高程模型,通过地形分析,建立明暗等高线提取模型,生成具有 ...
- GIS案例学习笔记-水文分析河网提取地理建模
GIS案例学习笔记-水文分析河网提取地理建模 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:针对数字高程模型,通过水文分析,提取河网 操作时间:25分钟 数据 ...
- Python学习笔记(2) Python提取《釜山行》人物关系
参考:http://www.jianshu.com/p/3bd06f8816d7 项目原理: 实验基于简单共现关系,编写 Python 代码从纯文本中提取出人物关系网络,并用Gephi 将生成的网 ...
- 【视频编解码·学习笔记】11. 提取SPS信息程序
一.准备工作: 回到之前SimpleH264Analyzer程序,找到SPS信息,并对其做解析 调整项目目录结构: 修改Global.h文件中代码,添加新数据类型UINT16,之前编写的工程中,UIN ...
- ArcGIS案例学习笔记2_2_模型构建器和山顶点提取批处理
ArcGIS案例学习笔记2_2_模型构建器和山顶点提取批处理 计划时间:第二天下午 背景:数据量大,工程大 目的:自动化,批处理,定制业务流程,不写程序 教程:Pdf/343 数据:chap8/ex5 ...
- 【视频编解码·学习笔记】13. 提取PPS信息程序
PPS结构解析 与之前解析SPS方式类似 一.定义PPS类: 在3.NAL Unit目录下,新建PicParamSet.cpp和PicParamSet.h,在这两个文件中写入类的定义和函数实现. 类定 ...
- swift学习笔记5——其它部分(自动引用计数、错误处理、泛型...)
之前学习swift时的个人笔记,根据github:the-swift-programming-language-in-chinese学习.总结,将重要的内容提取,加以理解后整理为学习笔记,方便以后查询 ...
随机推荐
- java算法02 - 树
树是一类重要的非线性结构.而二叉树是一种比较重要的树,接下来我们来了解二叉树的相关内容. 二叉搜索树:每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大. /** * 二叉搜索树 O( ...
- angularjs i18n
<!doctype html><html ng-app="myApp"><head> <meta charset="utf ...
- ecplise中设置字符编码
ecplise 设置 1 ecplise编码格式 右键 在general-workspace- text file encoding 选择utf-8 2 jsp文件编码格式 web-jspfile-e ...
- vsftp在iptables中的配置
在 /etc/vsftpd/vsftpd.conf 文件末添加以下几行 pasv_enable=YESpasv_min_port=20000pasv_max_port=20010 在 iptables ...
- 关于系统弹出错误:429 , ActiveX 部件不能创建对象 的解决方法
例如:win7 win10的系统,有时候运行某些软件会出现:429 , ActiveX 部件不能创建对象 的情况. 提示: "运行时错误'429': ActiveX 部件不能创建对象&quo ...
- 简单理解 SVM
SVM,中文名叫支持向量机. 在深度学习出现以前,它是数据挖掘的宠儿: SVM具有十分完整的数据理论证明,但同时理论也相当复杂. 初识SVM 同其他分类算法一样,SVM分类也是寻找合适的决策边界,为 ...
- 下载MNIST数据集脚本input_data源码
# Copyright 2015 Google Inc. All Rights Reserved.## Licensed under the Apache License, Version 2.0 ( ...
- linux启动流程的理解
1.bios 2.grub 选择 3.内核自解压vmlinux 4.内核引导的模式与变量(引导期内存分页映射)设置 #汇编级 5.内核内存再分页(内存空间映射),宏定义与设置,初始化consol,启动 ...
- DeepCTR专题:DeepFM论文学习和实现及感悟
论文地址:https://arxiv.org/pdf/1703.04247.pdf CTR预估我们知道在比较多的应用场景下都有使用.如:搜索排序.推荐系统等都有广泛的应用.并且CTR具有极其重要的 地 ...
- Mysql基础教程-Mysql的字符集查看与修改
Show variables like “%char%”修改mysql的字符集----数据库级1)临时的修改Set global character-set_server=utf82)永久修改Alte ...