1、(1)多项式

from sklearn.datasets import load_iris
iris = load_iris() from sklearn.naive_bayes import GaussianNB#贝叶斯
gnb = GaussianNB()
pred = gnb.fit(iris.data,iris.target)
y_pred = pred.predict(iris.data)#预测
print(iris.data.shape[0],(iris.target!=y_pred).sum()) from sklearn.naive_bayes import BernoulliNB
bnl = BernoulliNB()
pred = bnl.fit(iris.data,iris.target)#g构造模型
y_pred = pred.predict(iris.data)#预测
print(iris.data.shape[0],(iris.target!=y_pred).sum())

(2)高斯分布型

from sklearn.naive_bayes import GaussianNB
gnb1=GaussianNB()#构造建立模型
pred=gnb1.fit(iris.data,iris.target)#模型训练,拟合
y_pred=gnb1.predict(iris.data)#分类预测
print(iris.data.shape[0],(iris.target!=y_pred).sum())
scores=cross_val_score(gnb1,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())
print(y_pred)

(3)伯努利型

from sklearn.naive_bayes import BernoulliNB
gnb2=BernoulliNB()#构造
pred=gnb2.fit(iris.data,iris.target)#模型训练,拟合
y_pred=gnb2.predict(iris.data)#分类预测
print(iris.data.shape[0],(iris.target!=y_pred).sum())
scores=cross_val_score(gnb2,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())
print(y_pred)

 

2、

from sklearn.datasets import load_iris
iris = load_iris() from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
gnb=GaussianNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean()) from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import cross_val_score
gnb=BernoulliNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())
from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score gnb=MultinomialNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean())

3、

import csv
file_path=r'D:\1\SMSSpamCollectionjsn.txt'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]#邮件的内容
sms_label=[]#邮件的类别
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
sms_label.append(line[0])
sms_data.append(line[1])
sms.close()
sms_data=str(sms_data)#将列表转化为字符串
sms_data=sms_data.lower()#对大小写进行处理
sms_data=sms_data.split()#变成列表的形式
sms_data1=[]#存放处理后的内容
i=0
for i in sms_data:#去掉长度小于3的单词
if len(i)>4:
sms_data1.append(i)
continue

sklearn中的朴素贝叶斯模型及其应用的更多相关文章

  1. 11.sklearn中的朴素贝叶斯模型及其应用

    #1.使用朴素贝叶斯模型对iris数据集进行花分类 #尝试使用3种不同类型的朴素贝叶斯: #高斯分布型,多项式型,伯努利型 from sklearn import datasets iris=data ...

  2. 统计学习1:朴素贝叶斯模型(Numpy实现)

    模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\ ...

  3. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  4. 一步步教你轻松学朴素贝叶斯模型算法Sklearn深度篇3

    一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对 ...

  5. 机器学习Matlab打击垃圾邮件的分类————朴素贝叶斯模型

    该系列来自于我<人工智能>课程回顾总结,以及实验的一部分进行了总结学习机 垃圾分类是有监督的学习分类最经典的案例,本文首先回顾了概率论的基本知识.则以及朴素贝叶斯模型的思想.最后给出了垃圾 ...

  6. PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes

    http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑 ...

  7. Python实现 利用朴素贝叶斯模型(NBC)进行问句意图分类

    目录 朴素贝叶斯分类(NBC) 程序简介 分类流程 字典(dict)构造:用于jieba分词和槽值替换 数据集构建 代码分析 另外:点击右下角魔法阵上的[显示目录],可以导航~~ 朴素贝叶斯分类(NB ...

  8. 后端程序员之路 18、朴素贝叶斯模型(Naive Bayesian Model,NBM)

    贝叶斯推断及其互联网应用(一):定理简介 - 阮一峰的网络日志http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.ht ...

  9. R 基于朴素贝叶斯模型实现手机垃圾短信过滤

    # 读取数数据, 查看数据结构 df_raw <- read.csv("sms_spam.csv", stringsAsFactors=F) str(df_raw) leng ...

随机推荐

  1. 关于Servlet的一些归纳(2)

    1.web项目结构 根路径: 文件夹 文件 WEB-INF: lib(存放一些jar文件) classes(存放class文件) web.xml 2.GenericServlet类 实现了Servle ...

  2. 修改AD中PCB各层的透明度

    1.采用的Altium designer 版本为AD16: 2.进入PCB编辑页面,快捷键Ctrl+D,进入视图配置: 3.选择“透明度”,设置选中的层.对象所需的透明度:(横向可以连续选择多个对象, ...

  3. java应用性能分析

    dump内存信息 通过jps -lm找到进程id jmap -dump:format=b,file=./heap.hprof <pid> 使用jprofile等分析内存占用情况 dump线 ...

  4. ajax 提交form格式 和 json格式

    json 格式 内容在body中 ajax设置   Content-Type: application/json 浏览器查看为 Request Payload The Request Payload ...

  5. C++笔记之关键字explicit

    在C++中,explicit关键字用来修饰类的构造函数,被修饰的构造函数的类,不能发生相应的隐式类型转换,只能以显示的方式进行类型转换. explicit使用注意事项: explicit 关键字只能用 ...

  6. 《多线程操作之生产者消费者》(单生产单消费&多生产多消费)

    说明1:假设有一个放商品的盘子(此盘子只能放下一个商品).生产者每次生产一个商品之后,放到这个盘子里,然后唤醒消费者来消费这个面包.消费者消费完这个商品之后,就唤醒生产者生产下一个商品.前提是,只有盘 ...

  7. ionic iphone下的问题

    1. nsunknownkeyexception Terminating app due to uncaught exception 'NSUnknownKeyException', reason: ...

  8. python学习-迭代器,列表解析和列表生成式

    迭代器为类序列对象提供了一个类序列的接口.Python 的迭代无缝的支持序列对象,而且还允许程序猿迭代非序列类型,包括用户定义的对象. 迭代器是一个next()方法的对象,而不是通过索引计数.当需要下 ...

  9. 修改权限linux

    1.更改目录所有者命令:chown -R 用户名称 目录名称2.更改目录权限命令:chmod -R 755 目录名称 nginx在不同目录下需要给与全部权限才可以

  10. Eclipse is running in a JRE, but a JDK is required Some Maven plugins may not work when importing projects or updating source folders.

    安装Maven后每次启动出现警告信息: Eclipse is running in a JRE, but a JDK is requiredSome Maven plugins may not wor ...