tf.contrib.slim.data数据加载(1) reader
reader: 适用于原始数据数据形式的Tensorflow Reader
在库中parallel_reader.py是与reader相关的,它使用多个reader并行处理来提高速度,但文件中定义的类是继承自基类,所以我们先看基类的功能。
class ParallelReader(io_ops.ReaderBase):
基类
基类是各种不同类型reader的基类,它将'work unit'转换为record,比较典型的’work unit'是文件名,records(键值对形式)就是从这些文件中提取的内容。我们想要每一步只产生一个record,但是显然一个'work unit'可能对应多个record,所以我们需要一个存储'work unit'的queue,只有reader读取完一个‘work unit'中所有record之后,它才能获取下一个'work unit'。
基类首先使用了一个装饰器,装饰器的主要功能是输出装饰的函数到TF的api,装饰的函数功能不受影响,所以我们可以不用关注它。
@tf_export("ReaderBase")
class ReaderBase(object):
基类初始化函数检查是否支持eager execution,初始化类变量。
def __init__(self, reader_ref, supports_serialize=False):
if context.executing_eagerly():
raise RuntimeError(
"Readers are not supported when eager execution is enabled. "
"Instead, please use tf.data to get data into your model.")
self._reader_ref = reader_ref #实现reader的op
self._supports_serialize = supports_serialize #reader是否支持序列化状态
read函数会返回一个record。
def read(self, queue, name=None):
if isinstance(queue, ops.Tensor):
queue_ref = queue
else:
queue_ref = queue.queue_ref
if self._reader_ref.dtype == dtypes.resource:
return gen_io_ops.reader_read_v2(self._reader_ref, queue_ref, name=name)
else:
# For compatibility with pre-resource queues, create a ref(string) tensor
# which can be looked up as the same queue by a resource manager.
old_queue_op = gen_data_flow_ops.fake_queue(queue_ref)
return gen_io_ops.reader_read(self._reader_ref, old_queue_op, name=name)
read_up_to函数返回指定数量的records。
def read_up_to(self, queue, num_records, name=None):
if isinstance(queue, ops.Tensor):
queue_ref = queue
else:
queue_ref = queue.queue_ref
if self._reader_ref.dtype == dtypes.resource:
return gen_io_ops.reader_read_up_to_v2(self._reader_ref,
queue_ref,
num_records,
name=name)
else:
# For compatibility with pre-resource queues, create a ref(string) tensor
# which can be looked up as the same queue by a resource manager.
old_queue_op = gen_data_flow_ops.fake_queue(queue_ref)
return gen_io_ops.reader_read_up_to(self._reader_ref,
old_queue_op,
num_records,
name=name)
num_records_produced函数返回已经产生的record数量。
def num_records_produced(self, name=None):
if self._reader_ref.dtype == dtypes.resource:
return gen_io_ops.reader_num_records_produced_v2(self._reader_ref,
name=name)
else:
return gen_io_ops.reader_num_records_produced(self._reader_ref,
name=name)
num_work_units_completed函数返回已经完成的work units数量。
def num_work_units_completed(self, name=None):
if self._reader_ref.dtype == dtypes.resource:
return gen_io_ops.reader_num_work_units_completed_v2(self._reader_ref,
name=name)
else:
return gen_io_ops.reader_num_work_units_completed(self._reader_ref,
name=name)
serialize_state函数产生编码reader状态的一个string tensor。
def serialize_state(self, name=None):
if self._reader_ref.dtype == dtypes.resource:
return gen_io_ops.reader_serialize_state_v2(self._reader_ref, name=name)
else:
return gen_io_ops.reader_serialize_state(self._reader_ref, name=name)
restore_state函数将reader状态加载为指定状态。
def restore_state(self, state, name=None):
if self._reader_ref.dtype == dtypes.resource:
return gen_io_ops.reader_restore_state_v2(
self._reader_ref, state, name=name)
else:
return gen_io_ops.reader_restore_state(self._reader_ref, state, name=name)
reset_state函数将reader状态重置。
def reset(self, name=None):
if self._reader_ref.dtype == dtypes.resource:
return gen_io_ops.reader_reset_v2(self._reader_ref, name=name)
else:
return gen_io_ops.reader_reset(self._reader_ref, name=name)
还有supports_serialize函数和reader_ref函数则是返回相应类变量,至此基类中所有的函数都已经介绍完毕,可以看到,主要实现reader功能的是reader函数,其他函数则是查看reader状态。(由于gen_io_ops为c++代码实现,这里不予介绍。)
Parallel_reader
Parallel_reader是并行使用多个reader提高速度,它的构造函数利用参数构造多个reader,每个reader并行地读取不同的文件,异步地将文件入队到队列(common_queue)中。对列中dtypes必须是[tf.string, tf.string]。
def __init__(self,
reader_class,
common_queue,
num_readers=4,
reader_kwargs=None):
if len(common_queue.dtypes) != 2:
raise TypeError('common_queue.dtypes must be [tf.string, tf.string]')
for dtype in common_queue.dtypes:
if not dtype.is_compatible_with(tf_dtypes.string):
raise TypeError('common_queue.dtypes must be [tf.string, tf.string]')
reader_kwargs = reader_kwargs or {}
self._readers = [reader_class(**reader_kwargs) for _ in range(num_readers)]
self._common_queue = common_queue
read函数用QueueRunner执行入队操作后,再从队列中返回一个record。
def read(self, queue, name=None):
self._configure_readers_by(queue)
return self._common_queue.dequeue(name=name)
read_up_to函数是返回多个record。
def read_up_to(self, queue, num_records, name=None):
self._configure_readers_by(queue)
return self._common_queue.dequeue_up_to(num_records, name)
def _configure_readers_by(self, queue):
enqueue_ops = []
for reader in self._readers:
enqueue_ops.append(self._common_queue.enqueue(reader.read(queue)))
queue_runner.add_queue_runner(
queue_runner.QueueRunner(self._common_queue, enqueue_ops))
num_records_produced函数和num_work_units_completed函数,这两个函数功能和基类中同名函数一样。
def num_records_produced(self, name=None):
num_records = [r.num_records_produced() for r in self._readers]
return math_ops.add_n(num_records, name=name)
def num_work_units_completed(self, name=None):
num_work_units = [r.num_work_units_completed() for r in self._readers]
return math_ops.add_n(num_work_units, name=name)
num_readers函数和common_queue函数则是返回相关属性,至此Parallel_reader函数中所有函数就全部介绍完了,可以看出它的主要作用只是对多个reader的工作使用多线程处理。
最新一次编辑在:21:36:28 2018-07-16
tf.contrib.slim.data数据加载(1) reader的更多相关文章
- tf.contrib.slim.data数据加载 综述
TF-Slim为了方便加载各种数据类型(如TFRocords或者文本文件)的数据,创建了这个库. Dataset 这里的数据库与通常意义下数据库是不同的,这里数据库是python一个类,它负责将原始数 ...
- iOS教程:如何使用Core Data – 预加载和引入数据
这是接着上一次<iOS教程:Core Data数据持久性存储基础教程>的后续教程,程序也会使用上一次制作完成的. 再上一个教程中,我们只做了一个数据模型,之后我们使用这个数据模型中的数据创 ...
- spark SQL(三)数据源 Data Source----通用的数据 加载/保存功能
Spark SQL 的数据源------通用的数据 加载/保存功能 Spark SQL支持通过DataFrame接口在各种数据源上进行操作.DataFrame可以使用关系变换进行操作,也可以用来创建临 ...
- Tensorflow 2.0 datasets数据加载
导入包 import tensorflow as tf from tensorflow import keras 加载数据 tensorflow可以调用keras自带的datasets,很方便,就是有 ...
- tensorflow学习--数据加载
文章主要来自Tensorflow官方文档,同时加入了自己的理解以及部分代码 数据读取 TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每 ...
- python多种格式数据加载、处理与存储
多种格式数据加载.处理与存储 实际的场景中,我们会在不同的地方遇到各种不同的数据格式(比如大家熟悉的csv与txt,比如网页HTML格式,比如XML格式),我们来一起看看python如何和这些格式的数 ...
- flask+sqlite3+echarts3+ajax 异步数据加载
结构: /www | |-- /static |....|-- jquery-3.1.1.js |....|-- echarts.js(echarts3是单文件!!) | |-- /templates ...
- 浅谈Entity Framework中的数据加载方式
如果你还没有接触过或者根本不了解什么是Entity Framework,那么请看这里http://www.entityframeworktutorial.net/EntityFramework-Arc ...
- 实现虚拟模式的动态数据加载Windows窗体DataGridView控件 .net 4.5 (一)
实现虚拟模式的即时数据加载Windows窗体DataGridView控件 .net 4.5 原文地址 :http://msdn.microsoft.com/en-us/library/ms171624 ...
随机推荐
- 美图秀秀api实现图片的裁剪及美化
美图秀秀不仅有PC版.手机版等客户端的软件,还有Web开方接口,可以在web页面上调用美图秀秀的api接口,实现图片的编辑.像淘宝.网易.qq空间.新浪微博等大厂都使用过该接口. 官网地址:http: ...
- [经验交流] kubeadm 安装 kubernetes 一年过期的解决办法
kubeadm 是 kubernetes 提供的一个初始化集群的工具,使用起来非常方便.但是它创建的apiserver.controller-manager等证书默认只有一年的有效期,同时kubele ...
- GX/GZOI2019 day2 解题报告
GX/GZOI2019 day2 解题报告 题目链接 逼死强迫症 旅行者 旧词 t1 逼死强迫症 显然地,记 \(f(i)\) 为长度为 \(i\) 的木板的答案,可得: \(\\\) \[f(i)= ...
- golang interface类型转string等其他类型
inter 是interface类型,转化为string类型是: str := inter .(string) 转为其他类型也类似
- 04mycat数据切分
自定义切分文件 [root@mycat mycat]# cat conf/customer-hash-int.txt 101=0 102=0 103=0 104=1 105=1 106=1 Rule. ...
- iptables系列
详情请参考:http://www.zsythink.net/archives/tag/iptables/page/2/
- vue中数据添加完成以后,数据回显
1.格式 <FormItem label="奖品领取类型:" prop="getType" > <RadioGroup v-model=&qu ...
- 从头开始学JAVA[Day01]
1.Java程序的执行过程必须经过先编译,后解释两个步骤 Jvm的统一标准,具体定义了JVM的如下细节: --指令集 --寄存器 --类文件格式 --栈 --垃圾回收堆 --存储区 2.编译Java程 ...
- springboot idea 代码更改自己编译设置
第一步:在pom.xml文件中添加springboot 编译依赖 <dependency> <groupId>org.springframework.boot</grou ...
- jsp中一个标签两种方式绑定两个click事件导致未执行的问题
近日,在开发过程中,写了一个标签 <li id="a1" onclick="doSomething()">...</li> 在js页面中 ...