原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ42.html

题解

首先我们把式子改写一下:

$$(-1)^{\lfloor a\rfloor} \\=1-2(\lfloor a\rfloor \bmod 2)\\=1-2(\lfloor a\rfloor -2\lfloor \frac a2 \rfloor)$$

于是问题就变成了求解:

$$f(a,b,c,n) = \sum_{i=1}^n \left\lfloor \frac {a\sqrt{r} +b}{c}i\right\rfloor$$

按照类欧几里得算法的思路,我们把他变成一个 二维坐标系中  数梯形内整点 的问题,通过不断翻转坐标系搞一搞。

首先求出 $\left\lfloor \frac {a\sqrt{r} +b}{c}\right\rfloor$ 的值,即梯形短的一个底边的长度下取整。

然后把梯形转化成一个三角形。

然后把坐标系按照直线 $y=x$ 翻转,那么斜率取倒数:

$$\frac c {a\sqrt{r} + b} = \frac{c(a\sqrt r -b)}{a^2r-b^2} = \frac {ac\sqrt r -bc}{a^2r-b^2}$$

然后像类欧一样递归下去就好了。

代码

#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define int long long
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
int T,n,r;
double rt;
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int f(int a,int b,int c,int n){
if (!n)
return 0;
int t=gcd(a,gcd(b,c));
a/=t,b/=t,c/=t;
double k=1.0*(rt*a+b)/c;
int kk=(int)k;
k-=kk;
int m=(int)(k*n);
b-=c*kk;
return n*m+kk*(n+1)*n/2-f(a*c,-b*c,a*a*r-b*b,m);
}
signed main(){
T=read();
while (T--){
n=read(),r=read();
rt=sqrt(r);
int t=(int)rt;
if (t*t==r){
if (r&1)
puts(n&1?"-1":"0");
else
printf("%lld\n",n);
}
else
printf("%lld\n",n-2*f(1,0,1,n)+4*f(1,0,2,n));
}
return 0;
}

  

UOJ#42. 【清华集训2014】Sum 类欧几里德算法的更多相关文章

  1. BZOJ3817 清华集训2014 Sum 类欧几里得

    传送门 令\(\sqrt r = x\) 考虑将\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下 它等于\(1-2 \times (\lfloor dx \rfloor \ ...

  2. 清华集训2014 sum

    清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...

  3. uoj #46[清华集训2014]玄学

    uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...

  4. UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)

    题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...

  5. bzoj 3816&&uoj #41. [清华集训2014]矩阵变换

    稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...

  6. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  7. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  8. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  9. Luogu4433:[COCI2009-2010#1] ALADIN(类欧几里德算法)

    先套用一个线段树维护离散化之后的区间的每一段的答案 那么只要考虑怎么下面的东西即可 \[\sum_{i=1}^{n}(A\times i \ mod \ B)\] 拆开就是 \[\sum_{i=1}^ ...

随机推荐

  1. 启动jar的方式

    1.windows server 2008 start "srvRegistry" java -jar srvRegistry-1.0-SNAPSHOT.jar --spring. ...

  2. Android学习第九天

    为什么需要内容提供者 a)        如何创建数据库 b)        文件权限 c)         Chmod linux修改权限 内容提供者原理 a)        内容提供者把数据进行封 ...

  3. Django contenttypes组件

    contenttypes组件 介绍 Django包含一个contenttypes应用程序(app),可以跟踪Django项目中安装的所有模型(Model),提供用于处理模型的高级通用接口. Conte ...

  4. P1494 [国家集训队]小Z的袜子

    题目 P1494 [国家集训队]小Z的袜子 解析 在区间\([l,r]\)内, 任选两只袜子,有 \[r-l+1\choose2\] \[=\frac{(r-l+1)!}{2!(r-l-1)!}\] ...

  5. CAN总线为什么要有两个120Ω的终端电阻?

    1  CAN总线为什么要有两个120Ω的终端电阻? 2 终端电阻的作用是使阻抗连续,消除反射,那为什么只在物理上最远的两个节点加这个匹配电阻,而不是在所有的节点都加上匹配电阻? 高频信号传输时,信号波 ...

  6. class文件解释

  7. JDK1.8 HashMap源码分析

      一.HashMap概述 在JDK1.8之前,HashMap采用数组+链表实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里.但是当位于一个桶中的元素较多,即hash值相等的元素较多时 ...

  8. 第三节:总结.Net下后端的几种请求方式(WebClient、WebRequest、HttpClient)

    一. 前言 前端调用有Form表单提交,ajax提交,ajax一般是用Jquery的简化写法,在这里不再过多介绍: 后端调用大约有这些:WebCient.WebRequest.Httpclient.W ...

  9. django - 总结 - cnblog 知识点

    1.图像预览 点击头像------>点击input img和input重合; img在label,input-->display:none $("#avatar").c ...

  10. Java8从对象列表中取出某个属性的列表

    List<属性值类型> 属性List = 对象List.stream().map(对象::get方法()).collect(Collectors.toList()); 例如: List&l ...