局部敏感哈希(LSH)之simhash和minhash
minhash
1. 把文档A分词形成分词向量L
2. 使用K个hash函数,然后每个hash将L里面的分词分别进行hash,然后得到K个被hash过的集合
3. 分别得到K个集合中的最小hash,然后组成一个长度为K的hash集合
4. 最后用Jaccard index求出两篇文档的相似度
simhash
1. 把文档A分词形成分词向量L,L中的每一个元素都包涵一个分词C以及一个分词的权重W
2. 对L中的每一个元素的分词C进行hash,得到C1,然后组成一个新的向量L1
3. 初始化一个长度大于C1长度的向量V,所有元素初始化为0
4. 分别判断L1中的每一个元素C1的第i位,如果C1i是1,那么Vi加上w,否则Vi减去w
5. 最后判断V中的每一项,如果第i项大于0,那么第i项变成1,否则变成0
6. 两篇文档a,b分别得到aV,bV
6. 最后求出aV和bV的海明距离,一般距离不大于3的情况下说明两篇文档是相似的
SimHash的工作原理

1、分词,把需要判断文本分词形成这个文章的特征单词。最后形成去掉噪音词的单词序列并为每个词加上权重,我们假设权重分为5个级别(1~5)。比如:“ 美国“51区”雇员称内部有9架飞碟,曾看见灰色外星人 ” ==> 分词后为 “ 美国(4) 51区(5) 雇员(3) 称(1) 内部(2) 有(1) 9架(3) 飞碟(5) 曾(1) 看见(3) 灰色(4) 外星人(5)”,括号里是代表单词在整个句子里重要程度,数字越大越重要。
2、hash,通过hash算法把每个词变成hash值,比如“美国”通过hash算法计算为 100101,“51区”通过hash算法计算为 101011。这样我们的字符串就变成了一串串数字,还记得文章开头说过的吗,要把文章变为数字计算才能提高相似度计算性能,现在是降维过程进行时。
3、加权,通过 2步骤的hash生成结果,需要按照单词的权重形成加权数字串,比如“美国”的hash值为“100101”,通过加权计算为“4 -4 -4 4 -4 4”;“51区”的hash值为“101011”,通过加权计算为 “ 5 -5 5 -5 5 5”。
4、合并,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如 “美国”的 “4 -4 -4 4 -4 4”,“51区”的 “ 5 -5 5 -5 5 5”, 把每一位进行累加, “4+5 -4+-5 -4+5 4+-5 -4+5 4+5” ==》 “9 -9 1 -1 1 9”。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。
5、降维,把4步算出来的 “9 -9 1 -1 1 9” 变成 0 1 串,形成我们最终的simhash签名。 如果每一位大于0 记为 1,小于0 记为 0。最后算出结果为:“1 0 1 0 1 1”。
整个过程图为:


局部敏感哈希(LSH)之simhash和minhash的更多相关文章
- 海量数据挖掘MMDS week7: 局部敏感哈希LSH(进阶)
http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- [机器学习] 在茫茫人海中发现相似的你:实现局部敏感哈希(LSH)并应用于文档检索
简介 局部敏感哈希(Locality Sensitive Hasing)是一种近邻搜索模型,由斯坦福大学的Mose Charikar提出.我们用一种随机投影(Random Projection)的方式 ...
- 局部敏感哈希LSH
之前介绍了Annoy,Annoy是一种高维空间寻找近似最近邻的算法(ANN)的一种,接下来再讨论一种ANN算法,LSH局部敏感哈希. LSH的基本思想是: 原始空间中相邻的数据点通过映射或投影变换后, ...
- 局部敏感哈希LSH(Locality-Sensitive Hashing)——海量数据相似性查找技术
一. 前言 最近在工作中需要对海量数据进行相似性查找,即对微博全量用户进行关注相似度计算,计算得到每个用户关注相似度最高的TOP-N个用户,首先想到的是利用简单的协同过滤,先定义相似性度量(c ...
- 局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍
局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似近期邻高速查找技术--局部敏感哈希(Locality-Sensitive ...
- 局部敏感哈希(Locality-Sensitive Hashing, LSH)
本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包括了LSH的原理.LSH哈希函数集.以及LSH的一些参 ...
- 局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍(转)
局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive ...
- 海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensitive Hashing, LSH
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- [Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)
局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论 ...
- 局部敏感哈希算法(Locality Sensitive Hashing)
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Lo ...
随机推荐
- vue全家桶项目搭建(vue-cli 2.9.6+vue-router+vuex+axios)
一.安装vue-cli + vue-router + vuex + axios 1.安装vue-cli 2.创建项目 3.安装vuex和axios 二.搭建项目目录结构,如下所示: 1.assets目 ...
- java线程阻塞唤醒的四种方式
java在多线程情况下,经常会使用到线程的阻塞与唤醒,这里就为大家简单介绍一下以下几种阻塞/唤醒方式与区别,不做详细的介绍与代码分析 suspend与resume Java废弃 suspend() 去 ...
- 【转】ret,retf,iret的区别
ret RET, and its exact synonym RETN, pop IP or EIP from the stack and transfer control to the new ad ...
- 从锅炉工到AI专家(8)
ImageNet 基础部分完成,从本篇开始,会略微的增加一些难度. 通常说,在解决问题的时候,大多程序员都会在网上搜索,寻找一些相似相近的案例作为参考.这个方式在机器学习领域同样有效.可惜早期的时候, ...
- cache2go - cachetable源码分析
今天我们来看cachetable.go这个源码文件,除了前面介绍过的主要数据结构CacheTable外还有如下2个类型: 下面先看剩下2个类型是怎么定义的: CacheItemPair非常简单,注释一 ...
- Docker系列02—LXC---Docker的“前身”
本文收录在容器技术学习系列文章总目录 一.LXC介绍 1.Linux Container容器是一种内核虚拟化技术,可以提供轻量级的虚拟化,以便隔离进程和资源. 2.LXC为Linux Containe ...
- 【憩园】C#并发编程之概述
写在前面 并发编程一直都存在,只不过过去的很长时间里,比较难以实现,随着互联网的发展,人口红利的释放,更加友好的支持并发编程已经成了主流编程语言的标配,而对于软件开发人员来说,没有玩过并发编程都会有点 ...
- JS引擎线程的执行过程的三个阶段(一)
浏览器首先按顺序加载由<script>标签分割的js代码块,加载js代码块完毕后,立刻进入以下三个阶段,然后再按顺序查找下一个代码块,再继续执行以下三个阶段,无论是外部脚本文件(不异步加载 ...
- eclipse创建的maven项目,pom.xml文件报错解决方法
[错误一:]maven 编译级别过低 [解决办法:] 使用 maven-compiler-plugin 将 maven 编译级别改为 jdk1.6 以上: <!-- java编译插件 --> ...
- javascript基础修炼(4)——UMD规范的代码推演
javascript基础修炼(4)--UMD规范的代码推演 1. UMD规范 地址:https://github.com/umdjs/umd UMD规范,就是所有规范里长得最丑的那个,没有之一!!!它 ...