题意:n个物品每个价值a[i],要求选k个,可以重复,问能取到哪几个价值

题解:fft裸题.但是直接一次fft,然后快速幂会boom.这样是严格的\(2^{20}*log2(2^{20})*log(w)\).需要在快速幂里fft,每次取最大的2的次幂,然后fft也boom了,不知道是不是写搓了.ntt过了.....

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=1000000+10,maxn=1000000+10,inf=0x3f3f3f3f; ll x[N<<3],y[N<<3];
int rev[N<<3];
void getrev(int bit)
{
for(int i=0;i<(1<<bit);i++)
rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
}
void ntt(ll *a,int n,int dft)
{
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int step=1;step<n;step<<=1)
{
ll wn=qp(3,(mod-1)/(step*2));
if(dft==-1)wn=qp(wn,mod-2);
for(int j=0;j<n;j+=step<<1)
{
ll wnk=1;
for(int k=j;k<j+step;k++)
{
ll x=a[k];
ll y=wnk*a[k+step]%mod;
a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
wnk=wnk*wn%mod;
}
}
}
if(dft==-1)
{
ll inv=qp(n,mod-2);
for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
}
}
void solve(int k,int p)
{
int sz=0;while((1<<sz)<=p)sz++;sz++;
getrev(sz);
ntt(y,(1<<sz),1);
if(k&1)
{
ntt(x,(1<<sz),1);
for(int i=0;i<(1<<sz);i++)x[i]=x[i]*y[i]%mod;
ntt(x,(1<<sz),-1);
for(int i=0;i<(1<<sz);i++)if(x[i])x[i]=1;
}
for(int i=0;i<(1<<sz);i++)y[i]=y[i]*y[i]%mod;
ntt(y,(1<<sz),-1);
for(int i=0;i<(1<<sz);i++)if(y[i])y[i]=1;
}
int main()
{
int n,k,ma=0;scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
int a;scanf("%d",&a);
y[a]+=1;ma=max(ma,a);
}
x[0]=1;
while(k)solve(k,ma),k>>=1,ma<<=1;
for(int i=1;i<N;i++)if(x[i]!=0)printf("%d ",i);
return 0;
}
/******************** ********************/

edu9E. Thief in a Shop的更多相关文章

  1. codeforces 632+ E. Thief in a Shop

    E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input standard ...

  2. codeforces 632E. Thief in a Shop fft

    题目链接 E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input stan ...

  3. C - Thief in a Shop - dp完全背包-FFT生成函数

    C - Thief in a Shop 思路 :严格的控制好k的这个数量,这就是个裸完全背包问题.(复杂度最极端会到1e9) 他们随意原来随意组合的方案,与他们都减去 最小的 一个 a[ i ] 组合 ...

  4. codeforces Educational Codeforces Round 9 E - Thief in a Shop

    E - Thief in a Shop 题目大意:给你n ( n <= 1000)个物品每个物品的价值为ai (ai <= 1000),你只能恰好取k个物品,问你能组成哪些价值. 思路:我 ...

  5. Educational Codeforces Round 9 E. Thief in a Shop dp fft

    E. Thief in a Shop 题目连接: http://www.codeforces.com/contest/632/problem/E Description A thief made hi ...

  6. Educational Codeforces Round 9 E. Thief in a Shop NTT

    E. Thief in a Shop   A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...

  7. CF632E Thief in a Shop 和 CF958F3 Lightsabers (hard)

    Thief in a Shop n个物品每个价值ai,要求选k个,可以重复.问能取到哪几个价值? 1 ≤ n, k ≤ 1000,1 ≤ ai ≤ 1000 题解 将选一个物品能取到的价值的01生成函 ...

  8. Codeforces632E Thief in a Shop(NTT + 快速幂)

    题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...

  9. CF632E: Thief in a Shop(快速幂+NTT)(存疑)

    A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...

随机推荐

  1. 灵雀云CTO陈恺:从“鸿沟理论”看云原生,哪些技术能够跨越鸿沟?

    灵雀云CTO陈恺:从“鸿沟理论”看云原生,哪些技术能够跨越鸿沟? 历史进入2019年,放眼望去,今天的整个技术大环境和生态都发生了很大的变化.在己亥猪年春节刚刚过去的早春时节,我们来梳理和展望一下整个 ...

  2. Unity3D中的shader基础知识

    1.Unity中配备了强大的阴影和材料的语言工具称为ShaderLab,以程式语言来看,它类似于CgFX和Direct3D的效果框架语法,它描述了材质所必须要的一切咨询,而不仅仅局限于平面顶点/像素着 ...

  3. git for linux使用

    1 Linux下Git和GitHub环境的搭建 第一步: 安装Git,使用命令 “sudo apt-get install git” 第二步: 创建GitHub帐号 第三步: 生成ssh key,使用 ...

  4. 极致21点开发DAY4

    完成的内容:1.修改上一篇博文中的Bug  2.完成任务窗口逻辑 using System; using System.Collections.Generic; using UnityEngine; ...

  5. 用mongols轻松打造websocket应用

    用websocket做聊天系统是非常合适的. mongols是一个运行于linux系统之上的开源c++库,可轻松开启一个websocket服务器. 首先,build一个websocket服务器. #i ...

  6. sql server中的全局变量,常用的没有多少...以后看看就行

    全局变量格式:  @@*** 这些变量有系统维护,不需要我们自己定义,一般都是用来查看信息. 在存储过程中 用得最多的 @@error,判断有没有错误信息. 一.@@version:查看版本信息 二. ...

  7. IO流(三)

    五.Java序列化 概述 Java序列化是指把Java对象转换为字节序列的过程 Java反序列化是指把字节序列恢复为Java对象的过程 当两个Java进程进行通信时,发送方需要把这个Java对象转换为 ...

  8. you've successfully authenticated, but Gitee.com does not provide she access.

    如果都是正常的生成ssh的操作,还是会报这个错误,那么就是.... 你没更改文件夹的权限,这个坑跳了很久(汗...) sudo chmod 777 -r 文件夹

  9. random模块、time模块、sys模块、os模块

    一.random模块 1.随机取小数     (数学计算) print(random.random()) #取0-1之间的小数 print(random.uniform(3,6)) #uniform( ...

  10. POI兴趣点搜索 - 地理信息系统(6)

    (2017-08-13 银河统计) POI(Point of Interest),中文可以翻译为"兴趣点",兴趣点(POI)是地理信息系统中的一个术语,泛指一切可以抽象为点的地理对 ...