Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)
题目链接:https://loj.ac/problem/528
题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M]
解题思路:

代码:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const int maxn=1e7+;
const int mod=;
ll n,m,mu[maxn],sum[maxn],prime[maxn],tot;
void getMobius(int N){
for(int i=;i<=N;i++)prime[i]=;
mu[]=;
for(int i=;i<=N;i++){
if(prime[i]){
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot&&i*prime[j]<=N;j++){
prime[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
}
ll solve(ll a,ll b){
ll res=;
for(ll l=,r;l<=a;l=r+){
r=min(a/(a/l),b/(b/l));
ll x=(sum[(int)sqrt(r)]-sum[(int)sqrt(l-)]+mod)%mod,y=(a/l)%mod,z=(b/l)%mod;
res=(res+x*y%mod*z%mod)%mod;
}
return res;
}
int main(){
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
getMobius(1e7);
sum[]=;
for(int i=;i<=1e7;i++) sum[i]=sum[i-]+mu[i];
printf("%lld\n",solve(n,m));
return ;
}
Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)的更多相关文章
- loj#528. 「LibreOJ β Round #4」求和
求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\) 化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloo ...
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
随机推荐
- JSON.Net 自定义Json序列化时间格式
JSON.Net 自定义Json序列化时间格式 Intro 和 JAVA 项目组对接,他们的接口返回的数据是一个json字符串,里面的时间有的是Unix时间戳,有的是string类型,有的还是空,默认 ...
- 转摘app-稳定性测试
稳定性测试的概念有2种, 一, 稳定性测试,对应于异常性测试,即发生异常情况时,系统如何反应的测试.包含: 1 交互性测试,被打扰的情况,如来电,短信,低电量等.这些其实在上章的功能测试中有提到. 2 ...
- 写入Log错误日志
第一步创建ApplicationLog类 代码: using System;using System.Collections.Generic;using System.Linq;using Syste ...
- 【原】Java学习笔记001 - JAVA开发环境搭建
1.JDK下载并安装,以jdk-7u45-windows-i586.exe为例(注意JDK的安装和JRE的安装是分开的) 2.“我的电脑”右键属性,找到“高级系统设置”,找到“高级”tab下的“环境变 ...
- python3字符串格式化format()函数的简单用法
format()函数 """ 测试 format()函数 """ def testFormat(): # format()函数中有几个元素, ...
- windows下查看端口被占用及处理
一.通过命令行查找端口被谁占用 1.window+R组合键,调出命令窗口 2.输入命令:netstat -ano,列出所有端口的情况.在列表中我们观察被占用的端口 3.查看被占用端口对应的PID,输入 ...
- 5.6Python数据处理篇之Sympy系列(六)---矩阵的操作
目录 目录 前言 (一)矩阵的创建-Matrix() 1.说明: 2.源代码: 3.输出: (二)常用的构造矩阵 1.说明: 2.源代码: 3.输出: (三)基本操作 1.说明: 2.源代码: 3.输 ...
- 转:[kipmi0]进程导致系统负载高
最近一个用户这边服务器出现服务器负载很高的情况,原本正常是0.3~0.5左右 不正常的时候会达到3,重启机器就正常,开始以为是程序问题,后来在观察的时候把程序给杀掉了 然后重启,结果负载还是很高,于 ...
- Python安装包:协程(gevent)
- 新建swap分区的规划、挂载和自动挂载示例
注:来自Linux系统管理_磁盘分区和格式化的扩展 Linux系统管理_磁盘分区和格式化:http://murongqingqqq.blog.51cto.com/2902694/1361918 思路: ...