Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)
题目链接:https://loj.ac/problem/528
题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M]
解题思路:

代码:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const int maxn=1e7+;
const int mod=;
ll n,m,mu[maxn],sum[maxn],prime[maxn],tot;
void getMobius(int N){
for(int i=;i<=N;i++)prime[i]=;
mu[]=;
for(int i=;i<=N;i++){
if(prime[i]){
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot&&i*prime[j]<=N;j++){
prime[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
}
ll solve(ll a,ll b){
ll res=;
for(ll l=,r;l<=a;l=r+){
r=min(a/(a/l),b/(b/l));
ll x=(sum[(int)sqrt(r)]-sum[(int)sqrt(l-)]+mod)%mod,y=(a/l)%mod,z=(b/l)%mod;
res=(res+x*y%mod*z%mod)%mod;
}
return res;
}
int main(){
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
getMobius(1e7);
sum[]=;
for(int i=;i<=1e7;i++) sum[i]=sum[i-]+mu[i];
printf("%lld\n",solve(n,m));
return ;
}
Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)的更多相关文章
- loj#528. 「LibreOJ β Round #4」求和
求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\) 化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloo ...
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
随机推荐
- 微信小程序 从含有tabbar的页面跳转到不含有tabbar的页面
如何离开含有tabbar的页面 在微信小程序开发过程中,我们会碰到从某页跳转到一个含有tabbar的页面的需求, 用 wx.navigateTo({url: '...',}) 不起作用,需要使用 w ...
- Java新知识系列 四
[]URL的组成<协议>://<主机>:<端口>/<路径> . []线程的定义实例化和启动. []类的final变量初始化需要满足的条件. []管道通信 ...
- MongoDB副本集功能及节点属性梳理
副本集的主要功能 副本集是MongoDB高可用的基础,其主要作用 归纳为以下几点: (1)高可用,防止设备(服务器.网络)故障.提供自动FailOver功能. (2)无需配置高可用性虚拟节点:无论是S ...
- shell脚本批量推送公钥
目的:新建管理机,为了实现批量管理主机,设置密匙登陆 原理:.通过密钥登陆,可以不用密码 操作过程: 1.生成密匙 ssh-keygen 2.查看密匙 ls ~/.ssh/ 有私匙id_rsa公匙 ...
- Linux 自动化部署DNS服务器
Linux 自动化部署DNS服务器 1.首先配置主DNS服务器的IP地址,DNS地址一个写主dns的IP地址,一个写从dns的地址,这里也可以不写,在测试的时候在/etc/resolv.conf中添加 ...
- SQLServer之创建唯一聚集索引
创建唯一聚集索引典型实现 唯一索引可通过以下方式实现: PRIMARY KEY 或 UNIQUE 约束 在创建 PRIMARY KEY 约束时,如果不存在该表的聚集索引且未指定唯一非聚集索引,则将自动 ...
- 三数之和的golang实现
给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可以包含重复的三元组. ...
- JS第二部分--DOM文档对象模型
一.DOM的概念 二.DOM可以做什么 三.DOM对象的获取 四.事件的介绍 五.DOM节点标签样式属性的操作 六.DOM节点对象对值的操作 七.DOM节点-标签属性的操作(例如id class sr ...
- 日志学习系列(一)——Log4net的基础知识学习
今天把Log4net日志记录做了封装,作为一个公共的类库.记录一下应该注意的地方.先了解一下log4net的理论知识. 参考百度百科 一.log4net是什么? log4net库是Apache log ...
- Vuex初级入门及简单案例
1.为什么要使用Vuex? (1)方便所有组件共享信息,方便不同组件共享信息. (2)某个组件需要修改状态和需求. 2.状态有哪些? (1)组件内部定义的data状态(通过组件内部修改) (2)组 ...