LG3834 可持久化线段树1
题意
给定\(N\)个整数构成的序列,将对于指定的闭区间查询其区间内的第\(K\)小值。
$n \leq 2 \times 10^5 $
思路
在\([l,r]\)区间内的数的个数,可以用\(sum[r]-sum[l]\)来计算,这样的话就很容易想到要开n棵权值线段树,但是一看范围,很显然会\(mle\),于是就有一个叫主席树的东西出现了。
当新插入一个数的时候,会发现,只有一条路径上的\(sum\)会发生变化,其实只要复制这一条路径上的结点就好了。
插入时,如果它对右儿子无影响,那么将它的右儿子指向原先的树,左儿子继续进行插入操作,反之亦然。查找时用到差分进行左右路径的选择,一直走下去就好了。
#include <bits/stdc++.h>
using namespace std;
const int N=200005;
int n,m,a[N],b[N],s1[N*40],s2[N*40],sum[N*40],T[N],l,r,x,tot,n2;
int update(int pre,int l,int r,int x){
int rt=++tot;
s1[rt]=s1[pre],s2[rt]=s2[pre],sum[rt]=sum[pre]+1;
if (l>=r) return rt;
int mid=(l+r)>>1;
if (x<=mid) s1[rt]=update(s1[pre],l,mid,x);
else s2[rt]=update(s2[pre],mid+1,r,x);
return rt;
}
int query(int u,int v,int l,int r,int x){
if (l==r) return l;
int mid=(l+r)>>1,tt=sum[s1[v]]-sum[s1[u]];
if (x<=tt) return query(s1[u],s1[v],l,mid,x);
else return query(s2[u],s2[v],mid+1,r,x-tt);
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]),b[i]=a[i];
sort(b+1,b+n+1);
n2=unique(b+1,b+n+1)-b-1;
for (int i=1;i<=n;i++){
a[i]=lower_bound(b+1,b+n2+1,a[i])-b;
T[i]=update(T[i-1],1,n2,a[i]);
}
for (int i=1;i<=m;i++){
scanf("%d%d%d",&l,&r,&x);
printf("%d\n",b[query(T[l-1],T[r],1,n2,x)]);
}
}
LG3834 可持久化线段树1的更多相关文章
- PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树
#44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...
- 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1878 Solved: 846[Submit][Status ...
- 【BZOJ-2653】middle 可持久化线段树 + 二分
2653: middle Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1298 Solved: 734[Submit][Status][Discu ...
- HDU 4866 Shooting(持久化线段树)
view code//第二道持久化线段树,照着别人的代码慢慢敲,还是有点不理解 #include <iostream> #include <cstdio> #include & ...
- 【BZOJ-3653】谈笑风生 DFS序 + 可持久化线段树
3653: 谈笑风生 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 628 Solved: 245[Submit][Status][Discuss] ...
- 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树
没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...
- 【BZOJ3207】花神的嘲讽计划I 可持久化线段树/莫队
看到题目就可以想到hash 然后很自然的联想到可持久化权值线段树 WA:base取了偶数 这道题还可以用莫队做,比线段树快一些 可持久化线段树: #include<bits/stdc++.h&g ...
- 【BZOJ 3674】可持久化并查集加强版&【BZOJ 3673】可持久化并查集 by zky 用可持久化线段树破之
最后还是去掉异或顺手A了3673,,, 并查集其实就是fa数组,我们只需要维护这个fa数组,用可持久化线段树就行啦 1:判断是否属于同一集合,我加了路径压缩. 2:直接把跟的值指向root[k]的值破 ...
- 【BZOJ 3524】【Poi2014】Couriers 可持久化线段树
为什么这个主席树叫可持久化线段树,我不知道,具体得问达神.我无限T,然后DaD3zZ一针见血地指出了我的N*50爆内存导致无限编译超时O)ZO)ZO)Z真是太神啦.以图为鉴: 达神题解传送门:http ...
随机推荐
- Mysql -- 外键的变种 三种关系
一.介绍 因为有foreign key的约束, 使得两张表形成了三种关系 多对一 多对多 一对一 二.如果找出两张表之间的关系 #.先站在左表的角度去找 是否左表的多条记录可以对应右 ...
- 【原创】大数据基础之Spark(7)spark读取文件split过程(即RDD分区数量)
spark 2.1.1 spark初始化rdd的时候,需要读取文件,通常是hdfs文件,在读文件的时候可以指定最小partition数量,这里只是建议的数量,实际可能比这个要大(比如文件特别多或者特别 ...
- greenplum加密
--如下为greenplum5.0数据库加解密--加密函数select encrypt('123456','aa','aes');--加解密函数select convert_from(decrypt( ...
- 在CentOS 7上部署Ghost博客
作者:waringid 一.简介 跟静态博客不同的是,Ghost 这种轻量级的动态博客,有一个管理后台,可以直接写作和管理博客.本质上,跟 WordPress 是相通的,只是 Ghost 搭建在 No ...
- python数据分析实例(1)
1.获取数据: 想要获得道指30只成分股的最新股价 import requests import re import pandas as pd def retrieve_dji_list(): try ...
- jade模板 注意事项
1. jade模板 语法 doctype html html head body header div 2. 添加内容:直接在标签后边加空格 直接写内容 如下: div 我要写的内容 3. ...
- Ubuntu下 安装MiniGUI
1. 需要下载的组件 首先需要这些安装包,这些安装包可以在MiniGUI官网上下载. libminigui-gpl-3_0_12.tar.gzmg-samples-3_0_12.tar.gzfreet ...
- Java Spring Boot VS .NetCore (七) 配置文件
Java Spring Boot VS .NetCore (一)来一个简单的 Hello World Java Spring Boot VS .NetCore (二)实现一个过滤器Filter Jav ...
- 参数ref与out
通常我们向方法中传递的是值,方法获得的是这些值的一个拷贝,然后使用这些拷贝,当方法运行完毕后,这些拷贝将被丢弃,而原来的值不会受到影响. 这种情况是通常的,当然还有另外一种情况,我们向方法传递参数的形 ...
- kuangbin带你飞dp专题-基础dp
dp HDU - 1257 最少拦截系统 最长递增子序列 #include<iostream> using namespace std; const int maxn=1e7; int a ...