【原创】大数据基础之Hive(2)Hive SQL执行过程之SQL解析过程
Hive SQL解析过程
SQL->AST(Abstract Syntax Tree)->Task(MapRedTask,FetchTask)->QueryPlan(Task集合)->Job(Yarn)
SQL解析会在两个地方进行:
- 一个是SQL执行前compile,具体在Driver.compile,为了创建QueryPlan;
- 一个是explain,具体在ExplainSemanticAnalyzer.analyzeInternal,为了创建ExplainTask;
SQL执行过程
1 compile过程(SQL->AST(Abstract Syntax Tree)->QueryPlan)
org.apache.hadoop.hive.ql.Driver
public int compile(String command, boolean resetTaskIds, boolean deferClose) {
...
ParseDriver pd = new ParseDriver();
ASTNode tree = pd.parse(command, ctx);
tree = ParseUtils.findRootNonNullToken(tree);
...
BaseSemanticAnalyzer sem = SemanticAnalyzerFactory.get(queryState, tree);
...
sem.analyze(tree, ctx);
...
// Record any ACID compliant FileSinkOperators we saw so we can add our transaction ID to
// them later.
acidSinks = sem.getAcidFileSinks(); LOG.info("Semantic Analysis Completed"); // validate the plan
sem.validate();
acidInQuery = sem.hasAcidInQuery();
perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.ANALYZE); if (isInterrupted()) {
return handleInterruption("after analyzing query.");
} // get the output schema
schema = getSchema(sem, conf);
plan = new QueryPlan(queryStr, sem, perfLogger.getStartTime(PerfLogger.DRIVER_RUN), queryId,
queryState.getHiveOperation(), schema);
...
compile过程为先由ParseDriver将SQL转换为ASTNode,然后由BaseSemanticAnalyzer对ASTNode进行分析,最后将BaseSemanticAnalyzer传入QueryPlan构造函数来创建QueryPlan;
1)将SQL转换为ASTNode过程如下(SQL->AST(Abstract Syntax Tree))
org.apache.hadoop.hive.ql.parse.ParseDriver
public ASTNode parse(String command, Context ctx, boolean setTokenRewriteStream)
throws ParseException {
if (LOG.isDebugEnabled()) {
LOG.debug("Parsing command: " + command);
} HiveLexerX lexer = new HiveLexerX(new ANTLRNoCaseStringStream(command));
TokenRewriteStream tokens = new TokenRewriteStream(lexer);
if (ctx != null) {
if ( setTokenRewriteStream) {
ctx.setTokenRewriteStream(tokens);
}
lexer.setHiveConf(ctx.getConf());
}
HiveParser parser = new HiveParser(tokens);
if (ctx != null) {
parser.setHiveConf(ctx.getConf());
}
parser.setTreeAdaptor(adaptor);
HiveParser.statement_return r = null;
try {
r = parser.statement();
} catch (RecognitionException e) {
e.printStackTrace();
throw new ParseException(parser.errors);
} if (lexer.getErrors().size() == 0 && parser.errors.size() == 0) {
LOG.debug("Parse Completed");
} else if (lexer.getErrors().size() != 0) {
throw new ParseException(lexer.getErrors());
} else {
throw new ParseException(parser.errors);
} ASTNode tree = (ASTNode) r.getTree();
tree.setUnknownTokenBoundaries();
return tree;
}
2)analyze过程(AST(Abstract Syntax Tree)->Task)
org.apache.hadoop.hive.ql.parse.BaseSemanticAnalyzer
public void analyze(ASTNode ast, Context ctx) throws SemanticException {
initCtx(ctx);
init(true);
analyzeInternal(ast);
}
其中analyzeInternal是抽象方法,由不同的子类实现,比如DDLSemanticAnalyzer,SemanticAnalyzer,UpdateDeleteSemanticAnalyzer,ExplainSemanticAnalyzer等;
analyzeInternal主要的工作是将ASTNode转化为Task,包括可能的optimize,过程比较复杂,这里不贴代码;
3)创建QueryPlan过程如下(Task->QueryPlan)
org.apache.hadoop.hive.ql.QueryPlan
public QueryPlan(String queryString, BaseSemanticAnalyzer sem, Long startTime, String queryId,
HiveOperation operation, Schema resultSchema) {
this.queryString = queryString; rootTasks = new ArrayList<Task<? extends Serializable>>(sem.getAllRootTasks());
reducerTimeStatsPerJobList = new ArrayList<ReducerTimeStatsPerJob>();
fetchTask = sem.getFetchTask();
// Note that inputs and outputs can be changed when the query gets executed
inputs = sem.getAllInputs();
outputs = sem.getAllOutputs();
linfo = sem.getLineageInfo();
tableAccessInfo = sem.getTableAccessInfo();
columnAccessInfo = sem.getColumnAccessInfo();
idToTableNameMap = new HashMap<String, String>(sem.getIdToTableNameMap()); this.queryId = queryId == null ? makeQueryId() : queryId;
query = new org.apache.hadoop.hive.ql.plan.api.Query();
query.setQueryId(this.queryId);
query.putToQueryAttributes("queryString", this.queryString);
queryProperties = sem.getQueryProperties();
queryStartTime = startTime;
this.operation = operation;
this.autoCommitValue = sem.getAutoCommitValue();
this.resultSchema = resultSchema;
}
可见只是简单的将BaseSemanticAnalyzer中的内容拷贝出来,其中最重要的是sem.getAllRootTasks和sem.getFetchTask;
2 execute过程(QueryPlan->Job)
org.apache.hadoop.hive.ql.Driver
public int execute(boolean deferClose) throws CommandNeedRetryException {
...
// Add root Tasks to runnable
for (Task<? extends Serializable> tsk : plan.getRootTasks()) {
// This should never happen, if it does, it's a bug with the potential to produce
// incorrect results.
assert tsk.getParentTasks() == null || tsk.getParentTasks().isEmpty();
driverCxt.addToRunnable(tsk);
}
...
// Loop while you either have tasks running, or tasks queued up
while (driverCxt.isRunning()) { // Launch upto maxthreads tasks
Task<? extends Serializable> task;
while ((task = driverCxt.getRunnable(maxthreads)) != null) {
TaskRunner runner = launchTask(task, queryId, noName, jobname, jobs, driverCxt);
if (!runner.isRunning()) {
break;
}
}
... private TaskRunner launchTask(Task<? extends Serializable> tsk, String queryId, boolean noName,
String jobname, int jobs, DriverContext cxt) throws HiveException {
...
TaskRunner tskRun = new TaskRunner(tsk, tskRes);
...
tskRun.start();
...
tskRun.runSequential();
...
Driver.run中从QueryPlan中取出Task,并逐个launchTask,launchTask过程为将Task包装为TaskRunner,并最终调用TaskRunner.runSequential,下面看TaskRunner:
org.apache.hadoop.hive.ql.exec.TaskRunner
public void runSequential() {
int exitVal = -101;
try {
exitVal = tsk.executeTask();
...
这里直接调用Task.executeTask
org.apache.hadoop.hive.ql.exec.Task
public int executeTask() {
...
int retval = execute(driverContext);
...
这里execute是抽象方法,由子类实现,比如DDLTask,MapRedTask等,着重看MapRedTask,因为大部分的Task都是MapRedTask:
org.apache.hadoop.hive.ql.exec.mr.MapRedTask
public int execute(DriverContext driverContext) {
...
if (!runningViaChild) {
// we are not running this mapred task via child jvm
// so directly invoke ExecDriver
return super.execute(driverContext);
}
...
这里直接调用父类方法,也就是ExecDriver.execute,下面看:
org.apache.hadoop.hive.ql.exec.mr.ExecDriver
protected transient JobConf job;
...
public int execute(DriverContext driverContext) {
...
JobClient jc = null; MapWork mWork = work.getMapWork();
ReduceWork rWork = work.getReduceWork();
...
if (mWork.getNumMapTasks() != null) {
job.setNumMapTasks(mWork.getNumMapTasks().intValue());
}
...
job.setNumReduceTasks(rWork != null ? rWork.getNumReduceTasks().intValue() : 0);
job.setReducerClass(ExecReducer.class);
...
jc = new JobClient(job);
...
rj = jc.submitJob(job);
this.jobID = rj.getJobID();
...
这里将Task转化为Job提交到Yarn执行;
SQL Explain过程
另外一个SQL解析的过程是explain,在ExplainSemanticAnalyzer中将ASTNode转化为ExplainTask:
org.apache.hadoop.hive.ql.parse.ExplainSemanticAnalyzer
public void analyzeInternal(ASTNode ast) throws SemanticException {
...
ctx.setExplain(true);
ctx.setExplainLogical(logical); // Create a semantic analyzer for the query
ASTNode input = (ASTNode) ast.getChild(0);
BaseSemanticAnalyzer sem = SemanticAnalyzerFactory.get(queryState, input);
sem.analyze(input, ctx);
sem.validate(); ctx.setResFile(ctx.getLocalTmpPath());
List<Task<? extends Serializable>> tasks = sem.getAllRootTasks();
if (tasks == null) {
tasks = Collections.emptyList();
} FetchTask fetchTask = sem.getFetchTask();
if (fetchTask != null) {
// Initialize fetch work such that operator tree will be constructed.
fetchTask.getWork().initializeForFetch(ctx.getOpContext());
} ParseContext pCtx = null;
if (sem instanceof SemanticAnalyzer) {
pCtx = ((SemanticAnalyzer)sem).getParseContext();
} boolean userLevelExplain = !extended
&& !formatted
&& !dependency
&& !logical
&& !authorize
&& (HiveConf.getBoolVar(ctx.getConf(), HiveConf.ConfVars.HIVE_EXPLAIN_USER) && HiveConf
.getVar(conf, HiveConf.ConfVars.HIVE_EXECUTION_ENGINE).equals("tez"));
ExplainWork work = new ExplainWork(ctx.getResFile(),
pCtx,
tasks,
fetchTask,
sem,
extended,
formatted,
dependency,
logical,
authorize,
userLevelExplain,
ctx.getCboInfo()); work.setAppendTaskType(
HiveConf.getBoolVar(conf, HiveConf.ConfVars.HIVEEXPLAINDEPENDENCYAPPENDTASKTYPES)); ExplainTask explTask = (ExplainTask) TaskFactory.get(work, conf); fieldList = explTask.getResultSchema();
rootTasks.add(explTask);
}
【原创】大数据基础之Hive(2)Hive SQL执行过程之SQL解析过程的更多相关文章
- 【原创】大数据基础之Spark(4)RDD原理及代码解析
一 简介 spark核心是RDD,官方文档地址:https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-di ...
- CentOS6安装各种大数据软件 第八章:Hive安装和配置
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- 【原创】大数据基础之Benchmark(2)TPC-DS
tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 【原创】大数据基础之Hive(5)性能调优Performance Tuning
1 compress & mr hive默认的execution engine是mr hive> set hive.execution.engine;hive.execution.eng ...
- 【原创】大数据基础之Hive(1)Hive SQL执行过程之代码流程
hive 2.1 hive执行sql有两种方式: 执行hive命令,又细分为hive -e,hive -f,hive交互式: 执行beeline命令,beeline会连接远程thrift server ...
- 【原创】大数据基础之Hive(5)hive on spark
hive 2.3.4 on spark 2.4.0 Hive on Spark provides Hive with the ability to utilize Apache Spark as it ...
- 【原创】大数据基础之Hive(3)最简绿色部署
hadoop部署参考:https://www.cnblogs.com/barneywill/p/10428098.html 1 拷贝到所有服务器上并解压 # ansible all-servers - ...
- 了解大数据的技术生态系统 Hadoop,hive,spark(转载)
首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各 ...
随机推荐
- Elasticsearch 通关教程(二): 索引映射Mapping问题
数据库建表的时候,我们的DDL语句一般都会指定每个字段的存储类型,例如:varchar,int,datetime等等,目的很明确,就是更精确的存储数据,防止数据类型格式混乱. CREATE TABLE ...
- 《React Native 精解与实战》书籍连载「Android 平台与 React Native 混合开发」
此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...
- HashMap 与 Hashtable 的区别
Hashtable t 小写 二者用法一致 都实现Map接口 1.HashMap 的键值可以为null,而Hashtable不允许("null" 不是 null 前者是字符串 ...
- PS教您与粗壮的胳膊拜拜
Step 01在Photoshop 中打开素材图片,图中圈出的地方是需要调整的. Step 02用[套索工具]圈出胳膊及周围的环境. Step 03单击右键,选择[羽化],设置[羽化半径]为20 像素 ...
- 计算机网络基础知识-OSI七层协议模型
一.物理层 物理层主要规定了物理设备的标准,如网线的类型.光纤的接口类型.各种传输介质的传输速率,物理层的数据以比特流(二进制)的形式存在,传输时将比特流转化为电流强弱,达到目的地之后再转化为比特流. ...
- Linux scp sudo
command line - scp to remote server with sudo - Super Userhttps://superuser.com/questions/138893/scp ...
- 《Effective C++》模板与泛型编程:条款32-条款40
条款41:了解隐式接口和编译期多态 class支持显示接口和运行期多态 class的显示接口由函数的名签式构成(函数名称.参数类型.返回类型) class的多态通过virtual函数发生在运行期 te ...
- Nginx集群session管理的两种方式
1.IP_HASH 修改nginx配置文件 实现非常简单,但是绑定在一个服务器上了,不能跨越多个服务. 2.redis管理 管理session信息的空间,需要修改tomcat配置文件 下载相应的red ...
- 三菱FX系列PLC教程
标 题 日 期 点击 第一章:可编程控制器概论 2014-11-04 1401 1-0 课程概述 2014-11-05 192237 1-1 PLC的定义功能与特点 2014-11-05 16 ...
- PHP——判断是否为加密协议https
前言 就是一个封装的方法,用来判断域名前面是加http还是https 代码 function is_ssl() { if(isset($_SERVER['HTTPS']) && ('1 ...