题意:有A1 ~ An组成的数组,给你l r,L = min((l + ans[i - 1]) % n + 1, (r + ans[i - 1]) % n + 1),R = max((l + ans[i - 1]) % n + 1, (r + ans[i - 1]) % n + 1),你先需要的到L,R区间有k个不同的数字,然后问你L,R区间第(k + 1)/ 2个不同的数字下标是多少?

思路:显然是个在线询问。

我们之前已经会用主席树求区间内有多少不同数字了:从左到右把每个数字的位置存进每个操作的线段树,如果之前这个数已经出现,就在当前这棵线段树中删掉之前出现的位置,以保证每个数字出现的唯一性。显然每个区间保存的是某个数字最右边出现的位置。

但是这里显然我们不能去直接求第(k + 1)/ 2个不同的数字下标,因为我这里要求的是最早出现第(k + 1)/ 2个数的位置。那我直接从n往1建主席树,那我就变成了每个区间保存的是某个数字最左边出现的位置,显然我第i棵树并没有保存i前面的位置,那我就可以直接求i到后面任意位置的区间的第p个不相同数出现的位置。

代码:

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 2e5 + ;
const int M = maxn * ;
const ull seed = ;
const int INF = 0x3f3f3f3f;
const int MOD = ;
int a[maxn], root[maxn], tot;
int n, q;
struct node{
int lson, rson;
int sum;
}T[maxn * ];
int fa[maxn], ans[maxn];
void init(){
tot = ;
memset(fa, -, sizeof(fa));
memset(T, , sizeof(T));
}
void update(int l, int r, int &now, int pre, int pos, int v){
T[++tot] = T[pre], now = tot;
T[now].sum += v;
if(l == r) return;
int m = (l + r) >> ;
if(pos <= m)
update(l, m, T[now].lson, T[pre].lson, pos, v);
else
update(m + , r, T[now].rson, T[pre].rson, pos, v);
}
int query1(int l, int r, int L, int R, int now){
if(L <= l && R >= r){
return T[now].sum;
}
int m = (l + r) >> , sum = ;
if(L <= m)
sum += query1(l, m, L, R, T[now].lson);
if(R > m)
sum += query1(m + , r, L, R, T[now].rson);
return sum;
}
int query2(int l, int r, int now, int k){
if(l == r) return l;
int m = (l + r) >> ;
int sum = T[T[now].lson].sum;
if(sum >= k)
return query2(l, m, T[now].lson, k);
else
return query2(m + , r, T[now].rson, k - sum);
}
int main(){
int ca = , t;
scanf("%d" ,&t);
while(t--){
init();
scanf("%d%d", &n, &q);
root[n + ] = ;
for(int i = ; i <= n; i++)
scanf("%d", &a[i]);
for(int i = n; i >= ; i--){
if(fa[a[i]] == -){
update(, n, root[i], root[i + ], i, );
fa[a[i]] = i;
}
else{
update(, n, root[i], root[i + ], i, );
update(, n, root[i], root[i], fa[a[i]], -);
fa[a[i]] = i;
}
}
ans[] = ;
for(int i = ; i <= q; i++){
int l, r, L, R, k;
scanf("%d%d", &l, &r);
L = min((l + ans[i - ]) % n + , (r + ans[i - ]) % n + );
R = max((l + ans[i - ]) % n + , (r + ans[i - ]) % n + );
k = query1(, n, L, R, root[L]);
ans[i] = query2(, n, root[L], (k + ) / );
}
printf("Case #%d:", ca++);
for(int i = ; i <= q; i++)
printf(" %d", ans[i]);
printf("\n");
} return ;
}

HDU 5919 Sequence II(主席树)题解的更多相关文章

  1. HDU 5919 Sequence II 主席树

    Sequence II Problem Description   Mr. Frog has an integer sequence of length n, which can be denoted ...

  2. HDU 5919 Sequence II(主席树+逆序思想)

    Sequence II Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) To ...

  3. HDU 5919 -- Sequence II (主席树)

    题意: 给一串数字,每个数字的位置是这个数第一次出现的位置. 每个询问对于序列的一个子区间,设一共有k个不同的数,求第ceil(k/2)个数的位置. 因为强制在线,所以离线乱搞pass掉. 主席树可解 ...

  4. HDU 5919 - Sequence II (2016CCPC长春) 主席树 (区间第K小+区间不同值个数)

    HDU 5919 题意: 动态处理一个序列的区间问题,对于一个给定序列,每次输入区间的左端点和右端点,输出这个区间中:每个数字第一次出现的位子留下, 输出这些位子中最中间的那个,就是(len+1)/2 ...

  5. hdu 5919 Sequence II (可持久化线段树)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5919 大致题意: 给你一个长度为n的序列,q个询问,每次询问是给你两个数x,y,经过与上一次的答案进行运算 ...

  6. HDU5919 Sequence II(主席树)

    Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2,⋯,ana1,a2,⋯,anThere are ...

  7. HDU - 5919 Sequence II

    题意: 给定长度为n的序列和q次询问.每次询问给出一个区间(L,R),求出区间内每个数第一次出现位置的中位数,强制在线. 题解: 用主席树从右向左的插入点.对于当前点i,如果a[i]出现过,则把原位置 ...

  8. hdu 5147 Sequence II【树状数组/线段树】

    Sequence IITime Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...

  9. HDU 5919 Sequence II(主席树+区间不同数个数+区间第k小)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5919 题意:给出一串序列,每次给出区间,求出该区间内不同数的个数k和第一个数出现的位置(将这些位置组 ...

随机推荐

  1. Freemaker Replace函数的正则表达式运用

    replace(param1,param2,param3) param1 正则表达式:param2 将匹配的字符替换成指定字符:param3 模式 param3 参数如下  模式  i   r   m ...

  2. .NET 内存分配笔记

    阅读博客http://jonskeet.uk/csharp/memory.html的笔记(个人水平有限,如若翻译.记录有误,请提,谢谢~) 误区:引用类型保持在堆中,值类型保持在栈中. 问题:前半句正 ...

  3. python装饰器扩展之functools.wraps

    我们知道函数被装饰器,装饰后,所有的属性,以及内置函数就失效了. 原因是函数类型变成了warpper类型 示例1:不带wraps装饰器示例 def warfunc(func): def warpper ...

  4. 微信小程序之回调函数

    在微信小程序中众所周知在js里面得方法都是异步执行,我最近再做项目得时候也遇到了这个问题,再方法里面调用另一个方法里面的接口数据,第一次是调取不到的, 因为两个方法是同时开始执行得,所以怎么都取不到值 ...

  5. css遮罩蒙版效果 分栏效果

    mask遮罩蒙版效果 来看一下效果图: 这是两张原图: 遮罩层图像 注意,白色区域为透明状态   要展示的图像 使用mask之后产生的效果图   首先来解释一下遮罩.蒙版.和PS中的蒙版.Flash中 ...

  6. django中static的坑

    在django搭建网络平台的时候免不了要使用到static来保存静态文件, 在static文件夹里包含两个文件:css和js文件,如果使用不当就会出现很多问题 第一个坑:配置文件settings.py ...

  7. C# 数组在内存中的存储

    C# 数组是引用类型,那么在内存中是如何存储的呢? 在VS中调试C#程序,如何查看内存.寄存器.反汇编 在这篇文章里看到了如何在VS 中查看内存 先断点打在数组创建后语句那里,点debug->W ...

  8. Python生成器的原理及使用

    '''1,什么是生成器? 函数内但凡有一个yield关键字, 再调用函数就不会执行函数代码,得到的返回值就是一个生成器对象 生成器本身就是一种迭代器 next(g)过程: 会触发生成器g所对应的函数的 ...

  9. git冲突管理

    Diff 查看工作区(working directory)和暂存区(staged)之间差异:git diff 查看工作区(working directory)与当前仓库版本(repository)HE ...

  10. CentOS 6.9 升级OpenSSH版本 关闭ssh服务后门

    最近用低版本的OpenSSH(5.9p1版本) 的漏洞给系统留了个后门 , 可以劫持root密码或者给root开启后门密码 : 利用Openssh后门 劫持root密码 如果公司还在用CentOS6的 ...