(1)np.random.randn()函数

语法:

np.random.randn(d0,d1,d2……dn) 
1)当函数括号内没有参数时,则返回一个浮点数; 
2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵; 
3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵; 
4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()的输入参数为元组(tuple). 
5)np.random.randn()的输入通常为整数,但是如果为浮点数,则会自动直接截断转换为整数。

作用:

通过本函数可以返回一个或一组服从标准正态分布的随机样本值。

特点:

标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1)。对应的正态分布曲线如下所示,即 

标准正态分布曲线下面积分布规律是:

在-1.96~+1.96范围内曲线下的面积等于0.9500(即取值在这个范围的概率为95%),在-2.58~+2.58范围内曲线下面积为0.9900(即取值在这个范围的概率为99%). 
因此,由 np.random.randn()函数所产生的随机样本基本上取值主要在-1.96~+1.96之间,当然也不排除存在较大值的情形,只是概率较小而已。

在神经网络构建中,权重参数W通常采用该函数进行初始化,当然需要注意的是,通常会在生成的矩阵后面乘以小数,比如0.01,目的是为了提高梯度下降算法的收敛速度。 
W = np.random.randn(2,2)*0.01

import numpy as np

arr1 = np.random.randn(2,4)
print(arr1)
print('******************************************************************')
arr2 = np.random.rand(2,4)
print(arr2)
1
2
3
4
5
6
7
结果:

[[-1.03021018 0.5197033 0.52117459 -0.70102661]
[ 0.98268569 1.21940697 -1.095241 -0.38161758]]
******************************************************************
[[ 0.19947349 0.05282713 0.56704222 0.45479972]
[ 0.28827103 0.1643551 0.30486786 0.56386943]]

(2) np.random.rand()函数

语法:

np.random.rand(d0,d1,d2……dn) 
注:使用方法与np.random.randn()函数相同 
作用: 
通过本函数可以返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1。 
应用:在深度学习的Dropout正则化方法中,可以用于生成dropout随机向量(dl),例如(keep_prob表示保留神经元的比例):dl = np.random.rand(al.shape[0],al.shape[1]) < keep_prob

import numpy as np

arr1 = np.random.randn(2,4)
print(arr1)
print('******************************************************************')
arr2 = np.random.rand(2,4)
print(arr2)
1
2
3
4
5
6
7
结果:

[[-1.03021018 0.5197033 0.52117459 -0.70102661]
[ 0.98268569 1.21940697 -1.095241 -0.38161758]]
******************************************************************
[[ 0.19947349 0.05282713 0.56704222 0.45479972]
[ 0.28827103 0.1643551 0.30486786 0.56386943]]
---------------------
作者:木子木泗
来源:CSDN
原文:https://blog.csdn.net/u010758410/article/details/71799142
版权声明:本文为博主原创文章,转载请附上博文链接!

(3) np.random.randint()函数

语法:

numpy.random.randint(low, high=None, size=None, dtype=’l’) 
输入: 
low—–为最小值 
high—-为最大值 
size—–为数组维度大小 
dtype—为数据类型,默认的数据类型是np.int。 
返回值: 
返回随机整数或整型数组,范围区间为[low,high),包含low,不包含high; 
high没有填写时,默认生成随机数的范围是[0,low)

在使用Python进行数据处理时,往往需要用到大量的随机数据,那如何构造这么多数据呢?Python的第三方库numpy库中提供了random函数来实现这个功能。
本文将根据官方文档以及其他博友的博客一起来谈论常见的random函数以及使用
官方文档

首先说下numpy.random.seed()与numpy.random.RandomState()这两个在数据处理中比较常用的函数,两者实现的作用是一样的,都是使每次随机生成数一样,具体可见下图

1.numpy.random.rand()
官方文档中给出的用法是:numpy.random.rand(d0,d1,…dn)
以给定的形状创建一个数组,并在数组中加入在[0,1]之间均匀分布的随机样本。
用法及实现:

2.numpy.random.randn()
官方文档中给出的用法是:numpy.random.rand(d0,d1,…dn)
以给定的形状创建一个数组,数组元素来符合标准正态分布N(0,1)
若要获得一般正态分布则可用sigma * np.random.randn(…) + mu进行表示
用法及实现:

3.numpy.random.randint()
官方文档中给出的用法是:numpy.random.randint(low,high=None,size=None,dtype)
生成在半开半闭区间[low,high)上离散均匀分布的整数值;若high=None,则取值区间变为[0,low)
用法及实现
high=None的情形

high≠None

4.numpy.random.random_integers()
官方文档中给出的用法是:
numpy.random.random_integers(low,high=None,size=None)
生成闭区间[low,high]上离散均匀分布的整数值;若high=None,则取值区间变为[1,low]
用法及实现
high=None的情形

high≠None的情形

此外,若要将【a,b】区间分成N等分,也可以用此函数实现
a+(b-a)*(numpy.random.random_integers(N)-1)/(N-1)

5.numpy.random_sanmple()
官方文档中给出的用法是:
numpy.random.random_sample(size=None)
以给定形状返回[0,1)之间的随机浮点数
用法及实现

其他函数,numpy.random.random() ;numpy.random.ranf()
numpy.random.sample()用法及实现都与它相同

6.numpy.random.choice()
官方文档中给出的用法:
numpy.random.choice(a,size=None,replace=True,p=None)
若a为数组,则从a中选取元素;若a为单个int类型数,则选取range(a)中的数
replace是bool类型,为True,则选取的元素会出现重复;反之不会出现重复
p为数组,里面存放选到每个数的可能性,即概率
用法及实现

以上就是关于random函数的几种用法,欢迎大家一起交流
---------------------
作者:冻鸡hhhh
来源:CSDN
原文:https://blog.csdn.net/m0_38061927/article/details/75335069
版权声明:本文为博主原创文章,转载请附上博文链接!

np.random.randn()、np.random.rand()、np.random.randint()的更多相关文章

  1. PHP随机函数rand()、mt_rand()、srand()、mt_srand() 的区别

    1.生成随机数发生器种子的函数 srand(). mt_srand() 区别:mt_srand()  比 srand() 更好的生成随机数发生器种子 定义: void srand([int $seed ...

  2. np.random.rand均匀分布随机数和np.random.randn正态分布随机数函数使用方法

    np.random.rand用法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 生成特定形状下[0,1)下的均匀分布随机数 np.random.rand(a1,a2,a3...)生成形状为( ...

  3. Numpy中np.random.randn与np.random.rand的区别,及np.mgrid与np.ogrid的理解

    np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgr ...

  4. numpy.random.randn()与numpy.random.rand()的区别(转)

    numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. n ...

  5. numpy.random.randn()与rand()的区别【转】

    本文转载自:https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand( ...

  6. 【转】numpy.random.randn()与rand()的区别

    转自: https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand()就 ...

  7. numpy.random.randn()和numpy.random.rand()

    1 numpy.random.rand() (1)numpy.random.rand(d0,d1,…,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回 ...

  8. Python自动化运维之9、模块之sys、os、hashlib、random、time&datetime、logging、subprocess

    python模块 用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需 ...

  9. numpy.random.randn()与numpy.random.rand()的区别

    numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. n ...

随机推荐

  1. Logstash之二:原理

    一.Logstash 介绍 Logstash 是一款强大的数据处理工具,它可以实现数据传输,格式处理,格式化输出,还有强大的插件功能,常用于日志处理. 二.工作流程 Logstash 工作的三个阶段: ...

  2. 可以ping通ip地址,但是访问80,或者8080报错

    这个是服务器的防火墙的原因,一般linux防火墙默认是打开的,并且只开放22端口,用于远程连接. 这个时候需要关闭防火墙,或者开放端口.

  3. IntelliJ IDEA 创建Web项目

    1:创建Project:依次点击File–new Project: 2:选择Empty Project项目,点击Next: 3:输入项目名称,选择项目路径: 4:创建Module:点击Finish,弹 ...

  4. python中的logger模块详细讲解

    logger 提供了应用程序可以直接使用的接口handler将(logger创建的)日志记录发送到合适的目的输出filter提供了细度设备来决定输出哪条日志记录formatter决定日志记录的最终输出 ...

  5. Glusterfs3.3.1DHT(hash分布)源代码分析

    https://my.oschina.net/uvwxyz/blog/182224 1.DHT简介 GlusterFS使用算法进行数据定位,集群中的任何服务器和客户端只需根据路径和文件名就可以对数据进 ...

  6. python动态函数hasattr,getattr,setattr,delattr

    hasattr(object,name) hasattr用来判断对象中是否有name属性或者name方法,如果有,染回true,否则返回false class attr():     def fun( ...

  7. vb shell函数在c#的转换

    vb shell: Private Sub AddBarcodeImages(ByVal DTab As DataTable) If Not DTab Is Nothing Then DTab.Col ...

  8. Java并发编程学习路线(转)

    以前特地学过并发编程,但是没怎么学进去,不太喜欢.最近发现,作为一个资深工程师,却没有完整深入系统的学习过,而反是现在的BAT大并发是必须的,感觉甚是惭愧. 故找了一片学习文章,如下,准备集中一段时间 ...

  9. 关于putty连接百度云linux服务器那些事

    看有活动,30元半年的百度云服务器,就直接买了当练手的玩 买完之后,发现使用putty不能直接连接百度云的centos服务器, 用了putty和ssh都不能连接 试了好几次,都打算尝试用秘钥对的形式了 ...

  10. 安装vue.js

    1.  下载node https://nodejs.org/dist/v8.11.2/node-v8.11.2-x64.msi 2. 查看npm版本 在cmd下输入命令:npm -v 如果低于3.0版 ...