作为数据工程师,我日常用的主力语言是R,HiveQL,Java与Scala。R是非常适合做数据清洗的脚本语言,并且有非常好用的服务端IDE——RStudio Server;而用户日志主要储存在hive中,因此用HiveQL写job也是日常工作之一;当然R的执行效率确实不靠谱,因此还需要Java(Elasticsearch,Hadoop的原生语言)与Scala(Spark的原生语言)的帮助。

R和python一样也是一个很好的胶水语言,在搜索引擎的实战中,我就是用R来完成了ES集群索引的全量/增量更新操作。既然是一瓶胶水,你很难不希望它粘合上越来越多的东西。对于一个有处女座倾向的双鱼座,因为RHive的安装和配置太复杂而一直没法把R和Hive粘合起来是我长期以来的苦恼。最近要用Spark的Mlib做文本分类工作于是开始重新鼓捣Spark,没想到歪打正着地发现用Spark的R语言api可以操作Hive,搞通之后真是感到Awesome as fuck!

一、编译安装带有hive与R的Spark

官网上预编译好的spark都是不带hive支持的,因此只能自己从源码重新编译(在这里要感谢spark老司机同事的指点)。

# 从官网下载源码包
wget http://mirrors.hust.edu.cn/apache/spark/spark-1.6.1/spark-1.6.1.tgz # 解压
tar zxvf spark-1.6.1.tgz # 为编译R的支持做准备
spark-1.6.1/R/install-dev.sh # 编译安装带有hive与R的spark
spark-1.6.1/make-distribution.sh --name hadoop2.5 --skip-java-test --tgz -Psparkr -Pyarn -Dhadoop.version=2.5.0 -Dscala-2.10.4 -Phive -Phive-thriftserver # 把编译好的包解压到自己习惯的目录(参考elasticsearch放在/usr/share/目录下)
tar zxvf spark-1.6.1/spark-1.6.1-bin-hadoop2.5.tgz
mvspark-1.6.1/spark-1.6.1-bin-hadoop2.5 /usr/share/

二、环境配置

环境配置可以直接参考之前的文章 CentOS 6.7 hadoop free版本Spark 1.6安装与使用 ,此外要添加一下spark-defaults.conf这个配置文件,以使得hive能够被顺利连接上:

# vim $SPARK_HOME/conf/spark-defaults.conf

spark.eventLog.dir=hdfs://n1:8020/user/spark/applicationHistory2
spark.eventLog.enabled=true
spark.yarn.jar=hdfs://n1:8020/user/spark/share/lib/spark-assembly-1.6.1-hadoop2.5.0.jar
spark.driver.extraLibraryPath=/opt/cloudera/parcels/CDH-5.3.0-1.cdh5.3.0.p0.30/lib/hadoop/lib/native
spark.executor.extraLibraryPath=/opt/cloudera/parcels/CDH-5.3.0-1.cdh5.3.0.p0.30/lib/hadoop/lib/native # 注:需要把$SPARK_HOME/lib/spark-assembly-1.6.1-hadoop2.5.0.jar这个文件放到hdfs相应的目录下

好吧,这一步也是完全按照同事之前的经验整理的,还没有深入研究到底是如何生效的,但重要的是先用起来……

三、读写hive实例

直接上代码:

Sys.setenv(SPARK_HOME = "/usr/share/spark-1.6.1-bin-hadoop2.5", HADOOP_CONF_DIR="/opt/cloudera/parcels/CDH/lib/hadoop/etc/hadoop")
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"))) sc <- sparkR.init(master = "yarn-client", appName = "test")
hiveContext <- sparkRHive.init(sc) # 读取数据
results <- sql(hiveContext, "select * from dd_b_ec_e46_clickmodel where dt=20150601")
head(results) # 写入数据(首先用R将数据写到硬盘上然后进行装载)
sql(hiveContext, "CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sql(hiveContext, "LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")

这里需要注意的是:如果运行R的用户不是hdfs管理员用户的话要自己处理一下权限问题,具体问题具体google……

总结

大致看了一遍Spark R api后,还是略感失望的,因为发现Spark当前对R的支持主要就是集中在dataframe部分,连最基本的map和reduce操作都没有,看来也只是把R当成数据清洗的工具了。不知不觉中砸了两周的时间在Spark上,接下俩得抖擞精神做一下业务需求了,然后就是硬刚Scala和Mlib!

通过 Spark R 操作 Hive的更多相关文章

  1. spark2.3.0 配置spark sql 操作hive

    spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然后在spark引擎中进行sql统计分析,从而,通过spark sql与hive结合实现数据分析将成为一种最佳实践.配置步骤 ...

  2. spark+hcatalog操作hive表及其数据

    package iie.hadoop.hcatalog.spark; import iie.udps.common.hcatalog.SerHCatInputFormat; import iie.ud ...

  3. Spark SQL 操作Hive 数据

    Spark 2.0以前版本:val sparkConf = new SparkConf().setAppName("soyo")    val spark = new SparkC ...

  4. Spark SQL with Hive

    前一篇文章是Spark SQL的入门篇Spark SQL初探,介绍了一些基础知识和API,可是离我们的日常使用还似乎差了一步之遥. 终结Shark的利用有2个: 1.和Spark程序的集成有诸多限制 ...

  5. Hive on Spark和Spark sql on Hive,你能分的清楚么

    摘要:结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序. 本文分享自华为云社区<Hive on Spark和Spark sql o ...

  6. 大数据学习day25------spark08-----1. 读取数据库的形式创建DataFrame 2. Parquet格式的数据源 3. Orc格式的数据源 4.spark_sql整合hive 5.在IDEA中编写spark程序(用来操作hive) 6. SQL风格和DSL风格以及RDD的形式计算连续登陆三天的用户

    1. 读取数据库的形式创建DataFrame DataFrameFromJDBC object DataFrameFromJDBC { def main(args: Array[String]): U ...

  7. Spark之 使用SparkSql操作Hive的Scala程序实现

    依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2 ...

  8. Spark 操作Hive 流程

    1.ubuntu 装mysql 2.进入mysql: 3.mysql>create database hive (这个将来是存 你在Hive中建的数据库以及表的信息的(也就是元数据))mysql ...

  9. spark 操作hive

    1.hive动态分区,只需进行以下设置 val spark = SparkSession.builder() .appName("hivetest") .master(" ...

随机推荐

  1. JS验证邮箱格式是否正确 实例代码

    如何用js验证邮箱格式是否正确?分享一个例子.代码: /* *验证邮箱格式是否正确 *参数strEmail,需要验证的邮箱 */ function chkEmail(strEmail) { if (! ...

  2. chrome浏览器:chrome 69 恢复默认UI

    1.在浏览器地址栏输入 chrome://flags/#top-chrome-md 并回车 2.将UI Layout for the browser's top chrome 右边的选项修改为Norm ...

  3. AI 技术咖们说,进入未来世界首先需要一个“虚拟的我” | 科技生活节倒计时8天

    http://www.tmtpost.com/3367762.html 未来世界是什么样子? 斯皮尔伯格在<头号玩家>中构建了一个充满科技感.富有浓烈浪漫主义色彩的虚拟世界.戴上VR眼镜, ...

  4. javascript基础拾遗(十三)

    1.jQuery的特点 jQuery是目前非常流行的javascript库,理念是"Write Less,Do More" 1)消除浏览器差异 2)简洁的操作DOM方法 3)轻松实 ...

  5. 每日英语:The Most Destructive, Unpredictable Force in Tech

    What's the most destructive force in the tech world, the thing that has nearly killed BlackBerry, pu ...

  6. java动态加载jar包,并运行其中的类和方法

    动态加载jar包,在实际开发中经常会需要用到,尤其涉及平台和业务的关系的时候,业务逻辑部分可以独立出去交给业务方管理,业务方只需要提供jar包,就能在平台上运行. 下面通过一个实例来直观演示: 第一: ...

  7. 系统清理工具CCleaner被植入后门

    概述 2017年9月18日,有情报披露,著名的系统优化工具CCleaner的某个版本被发现植入后门,大量使用该工具的用户恐将面临泄密风险.这是继Xshell后门事件后,又一起严重的软件供应链来源攻击事 ...

  8. 通过Fiddler肆意修改接口返回数据进行测试

    [本文出自天外归云的博客园] 方法介绍与比对 在测试的过程中,有的需求是这样的,它需要你修改接口返回的数据,从而检查在客户端手机app内是否显示正确,这也算是一种接口容错测试,接口容错测试属于app性 ...

  9. mysql性能优化(二)

    key_buffer_size 为了最小化磁盘的 I/O , MyISAM 存储引擎的表使用键高速缓存来缓存索引,这个键高速缓存的大小则通过 key-buffer-size 参数来设置.如果应用系统中 ...

  10. vs2010密钥

    vs2010密钥 YCFHQ-9DWCY-DKV88-T2TMH-G7BHP