最好的分析FlatDHCPManager的源文,有机会把这篇翻译了

===========================

Over time, networking in OpenStack has been evolving from a simple, barely usable model, to one that aims to support full customer isolation. To address different user needs, OpenStack comes with a handful of “network managers”. A network manager defines the network topology for a given OpenStack deployment. As  of the current stable “Essex” release of OpenStack, one can choose from three different types of network managers: FlatManager, FlatDHCPManager, VlanManager. I’ll discuss the first two of them here.

FlatManager and FlatDHCPManager have lots in common. They both rely on the concept of bridged networking, with a single bridge device. Let’s consider her the example of a multi-host network; we’ll look at a single-host use case in a subsequent post.

For each compute node, there is a single virtual bridge created, the name of which is specified in the Nova configuration file using this option:

flat_network_bridge=br100

All the VMs spawned by OpenStack get attached to this dedicated bridge.

Network bridging on OpenStack compute node

This approach (single bridge per compute node) suffers from a common known limitation of bridged networking: a linux bridge can be attached only to a signle physical interface on the host machine (we could get away with VLAN interfaces here, but this is not supported by FlatDHCPManager and FlatManager). Because of this, there is no L2 isolation between hosts. They all share the same ARP broadcast domain.

The idea behind FlatManager and FlatDHCPManager is to have one “flat” IP address pool defined throughout the cluster. This address space is shared among all  user instances, regardless of which tenant they belong to. Each tenant is free to grab whatever address is available in the pool.

FlatManager

FlatManager provides the most primitive set of operations. Its role boils down just to attaching the instance to the bridge on the compute node. By default, it does no IP configuration of the instance. This task is left for the systems administrator and can be done using some external DHCP server or other means.

FlatManager network topology

FlatDHCPManager

FlatDHCPManager plugs  a given instance into the bridge, and on top of that provides a DHCP server to boot up from.

On each compute node:

  • the network bridge is given an address from the “flat” IP pool
  • a dnsmasq DHCP server process is spawned and listens on the bridge interface IP
  • the bridge acts as the default gateway for all the instances running on the given compute node

FlatDHCPManager – network topology

As for dnsmasq, FlatDHCPManager creates a static lease file per compute node to guarantee the same IP address for the instance over time. The lease file is constructed based on instance data from the Nova database, namely MAC, IP and hostname. The dnsmasq server is supposed to hand out addresses only to instances running locally on the compute node.  To achieve this, instance data to be put into DHCP lease file  are filtered by the ‘host’ field from the ‘instances’ table.  Also, the default gateway option in dnsmasq is set to the bridge’s IP address. On the diagram below you san see that it will be given a different default gateway depending on which compute node the instance lands.

Network gateways for instances running on different compute nodes

Below I’ve shown the routing table from vm_1 and for vm_3 – each of them has a different default gateway:

root@vm_1:~# route -n
Kernel IP routing table
Destination    Gateway     Genmask Flags Metric Ref Use Iface
0.0.0.0        10.0.0.1     0.0.0.0 UG     0   0   0 eth0

root@vm_3:~# route -n
Kernel IP routing table
Destination    Gateway     Genmask Flags Metric Ref Use Iface
0.0.0.0        10.0.0.4     0.0.0.0 UG     0   0   0 eth0

By default, all the VMs in the “flat”
network can see one another regardless of which tenant they belong to.
One can enforce instance isolation by applying the following  flag in nova.conf:

allow_same_net_traffic=False

This configures  IPtables policies to
prevent any traffic between instances (even inside the same tenant),
unless it is unblocked in a security group.

From practical standpoint, “flat”
managers seem to be usable for homogenous,  relatively small, internal
 corporate clouds where there are no tenants at all, or their number is
very limited.  Typically, the usage scenario will be a dynamically
scaled web server farm or an HPC cluster. For this purpose it is usually
sufficient to have a single IP address space where IP address
management is offloaded to some central DHCP server or is managed in a
simple way by OpenStack’s dnsmasq. On the other hand, flat networking
can struggle with scalability, as all the instances share the same L2
broadcast domain.

These issues (scalability +
multitenancy) are in some ways addressed by VlanManager, which will be
covered in an upcoming blog posts.

OpenStack Networking – FlatManager and FlatDHCPManager的更多相关文章

  1. OpenStack Networking overview

    原文地址:http://docs.openstack.org/newton/install-guide-ubuntu/neutron-concepts.html Networking service ...

  2. OpenStack Networking

    今天的数据中心网络比以往不论什么时候包括的设备都要多,比如server.网络设备.存储系统和安全设备等.这当中有非常多被近一步划分为多个虚拟机和虚拟网络.IP地址的数量.路由配置和安全规则能够迅速达到 ...

  3. gophercloud openstack networking 源码分析

    1.network 部分 // Package networks contains functionality for working with Neutron network resources. ...

  4. Openstack组件部署 — Networking service_安装并配置Controller Node

    目录 目录 前文列表 前提条件 网络环境 完成下面的步骤以创建数据库 创建service credentials服务凭证 创建Neutron的API Endpoints 配置自服务网络 安装网络组件 ...

  5. openstack组件手动部署整合

    preface:当你完全且正确的配置好整个OpenStack ENV 你将能看到的和体验到的!!! 我们先来看看简单效果吧,祝君能在这条路上走的更远,更好;

  6. 8.OpenStack网络组件

    添加网络组件 安装和配置控制器节点 创建数据库 mysql -uroot -ptoyo123 CREATE DATABASE neutron; GRANT ALL PRIVILEGES ON neut ...

  7. 完整部署CentOS7.2+OpenStack+kvm 云平台环境(1)--基础环境搭建

    公司在IDC机房有两台很高配置的服务器,计划在上面部署openstack云平台虚拟化环境,用于承载后期开发测试和其他的一些对内业务.以下对openstack的部署过程及其使用做一详细介绍,仅仅依据本人 ...

  8. CentOS RDO方式快速安装OpenStack

    一.了解RDO RDO是什么? RDO是红帽Red Hat Enterprise Linux OpenStack Platform的社区版,类似RHEL和Fedora,RHEV和oVirt这样的关系. ...

  9. 发现 OpenStack: 架构、功能和交互

    原文:http://www.ibm.com/developerworks/cn/cloud/library/cl-openstack-overview/index.html OpenStack 是由 ...

随机推荐

  1. linux下配置SS5(SOCK5)代理服务

    安装sock5所需依赖开发库: # yum install pam-devel openldap-devel openssl-devel 下载并解压安装sock5 # wget http://down ...

  2. AOP-配合slf4j打印日志

    基本思想 凡在目标实例上或在目标实例方法(非静态方法)上标注自定义注解@AutoLog,其方法执行时将触发AOP操作: @AutoLog只有一个参数,用来控制是否打印该方法的参数和返回结果的json字 ...

  3. Android 监听屏幕唤醒和关闭的广播

    今天希望应用程序的服务运行时,可以监听到屏幕的唤醒.继续百度学习法,连同监听闭幕关闭也一同学习了. 此种情况需要动态注册系统广播.在AndroidManifest.xml中静态注册的实际运行中无效. ...

  4. 主调度器schedule

    中断处理完毕后,系统有三种执行流向:                                                                               1)直 ...

  5. python修改python unittest的运行顺序

    正常是一个测试类中按函数名字运行, 下面修改成直接按每个测试方法的代码顺序执行 文件 unittest_util.py import time import unittest from app.uti ...

  6. pycharm 对代码做静态检查

    对于下面这种情况,java c这些提前编译的语言,不给你运行机会就立马报错了,但对于动态语言运行之后才能报错,用运行的方法来检查代码错误是在是太坑了,这是py对比静态语言的巨大劣势,尤其是代码文件多行 ...

  7. [原]unity3d 纹理旋转

    纹理旋转实现思路:纹理坐标*平移矩阵*旋转矩阵(类似顶点旋转): 矩阵一般要求中心点为(0,0) 而纹理中心点默认(0.5,0.5);所以先得平移到(0,0):可以考虑乘以平移矩阵[1,0,0,0,1 ...

  8. 【scala】scala 数组 (三)

    基础内容 1. 数组定义 定长.可变数组的定义;元素添加,删除,排序,求和等常用运算 import scala.collection.mutable.ArrayBuffer import scala. ...

  9. Window系统、主函数和窗体函数这三者之间的关系

    理解Window系统.主窗体.窗体函数这三者之间的关系,对于编写Windows程序十分重要. 主函数和窗体函数都是由Windows系统来调用的函数.仅仅只是主函数是程序启动之后.系统首先调用的函数: ...

  10. Git Step by Step – (5) Git分支(branch)

    在前面两盘文章中介绍了Git的基本原理,都是理论知识.这篇文章我们再次回到实践中,看看Git分支(branch)的使用. 在代码版本控制工具中,都会有branch的概念.刚开始建立版本仓库的时候,我们 ...