John

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2034    Accepted Submission(s): 1096

Problem Description
Little John is playing very funny game with his younger brother. There is one big box filled with M&Ms of different colors. At first John has to eat several M&Ms of the same color. Then his opponent has to make a turn. And so on. Please note that each player has to eat at least one M&M during his turn. If John (or his brother) will eat the last M&M from the box he will be considered as a looser and he will have to buy a new candy box.

Both of players are using optimal game strategy. John starts first always. You will be given information about M&Ms and your task is to determine a winner of such a beautiful game.

 
Input
The first line of input will contain a single integer T – the number of test cases. Next T pairs of lines will describe tests in a following format. The first line of each test will contain an integer N – the amount of different M&M colors in a box. Next line will contain N integers Ai, separated by spaces – amount of M&Ms of i-th color.

Constraints:
1 <= T <= 474,
1 <= N <= 47,
1 <= Ai <= 4747

 
Output
Output T lines each of them containing information about game winner. Print “John” if John will win the game or “Brother” in other case.

 
Sample Input
2
3
3 5 1
1
1
 
Sample Output
John
Brother
 
Source
 
Recommend
lcy
 

尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是
(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情
形。

计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(^)表示这种运算。这种运算和一般加法不同的一点是1^1=0。先看(1,2,3)的按位模2加的结
果:

1 =二进制01
2 =二进制10
3 =二进制11 (^)
———————
0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。任何奇异局势(a,b,c)都有 a ^ b ^ c =0。如果我们面对的是一个非奇异局势(a,b,c),

要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为  a ^ b,即可,因为有如下的运算结果:  a ^ b ^( a ^ b)=(a ^ a) ^ ( b ^ b ) = 0 ^ 0 = 0。

要将c 变为a ^ b,只要从 c中减去 c -(a ^ b)即可。

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int main(){ //freopen("input.txt","r",stdin); int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
int ans=,flag=,x;
for(int i=;i<n;i++){
scanf("%d",&x);
ans^=x;
if(x>) //当所有数据都为1时的特判
flag=;
}
if(flag){
if(ans==)
puts("Brother");
else
puts("John");
}else{
if(n&)
puts("Brother");
else
puts("John");
}
}
return ;
}

HDU 1907 John (Nim博弈)的更多相关文章

  1. HDU 1907 John nim博弈变形

    John Problem Description   Little John is playing very funny game with his younger brother. There is ...

  2. HDU 1907 John(博弈)

    题目 参考了博客:http://blog.csdn.net/akof1314/article/details/4447709 //0 1 -2 //1 1 -1 //0 2 -1 //1 2 -1 / ...

  3. hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)

    Problem Description Little John is playing very funny game with his younger brother. There is one bi ...

  4. hdu 1907 John (anti—Nim)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)http://acm.h ...

  5. POJ 3480 &amp; HDU 1907 John(尼姆博弈变形)

    题目链接: PKU:http://poj.org/problem? id=3480 HDU:http://acm.hdu.edu.cn/showproblem.php? pid=1907 Descri ...

  6. HDU - 1907 John 反Nimm博弈

    思路: 注意与Nimm博弈的区别,谁拿完谁输! 先手必胜的条件: 1.  每一个小游戏都只剩一个石子了,且SG = 0. 2. 至少有一堆石子数大于1,且SG不等于0 证明:1. 你和对手都只有一种选 ...

  7. HDU 1907 John(取火柴博弈2)

    传送门 #include<iostream> #include<cstdio> #include<cstring> using namespace std; int ...

  8. hdu 1907 John(anti nim)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  9. hdu 1907 John (尼姆博弈)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

随机推荐

  1. Java提高篇(转)

    http://www.cnblogs.com/mfrank/category/1118474.html Day1 抽象类 Day2 接口 Day3 抽象类与接口的比较 Day4 Java中的回调 Da ...

  2. Linux动态链接库的使用

    1.前言 在实际开发过程中,各个模块之间会涉及到一些通用的功能,比如读写文件,查找.排序.为了减少代码的冗余,提高代码的质量,可以将这些通用的部分提取出来,做出公共的模块库.通过动态链接库可以实现多个 ...

  3. sqrt函数的实现

    原文:http://blog.csdn.net/legend050709/article/details/39394381 sqrt算法实现: (一)int sqrt1(int n);求取整数x的平方 ...

  4. oauth2-server-php-docs 存储 学说2

    学说2 创建客户端和访问令牌存储 要把学说融入到你的项目中,首先要建立你的实体.我们先从客户端,用户和访问令牌模型开始: yaml YourNamespace\Entity\OAuthClient: ...

  5. Oracle整形转字符串to_char()

    使用to_char()将NUMBER转换为字符串: select to_char(AW_PROCESSSTATUS ) as PROCESSSTATUS from A

  6. 教育单元测试mock框架优化之路(下)

    转载:https://sq.163yun.com/blog/article/169563599967031296 四.循环依赖的解决 果然! 当我将@SpyBean应用到存在有循环依赖的Bean上时, ...

  7. (纪录片)《星际穿越》中的科学 The Science of Interstellar

    简介: 导演: Gail Willumsen编剧: Gail Willumsen主演: 克里斯托弗·诺兰 / 乔纳森·诺兰 / 基普·索恩 / 马修·麦康纳类型: 纪录片 / 短片制片国家/地区: 美 ...

  8. 免费素材:气球样式的图标集(PSD, SVG, PNG)

    本地下载 一套30枚设计精良的气泡式圆形图标,两种款式供您选择,相信你会喜欢!

  9. 1418 This function has none of DETERMINISTIC,NO SQL,or R

    标签: [err]1418 函数创建报错 分类: 菜鸟DBA之MySQL --------------------------------------------------------------- ...

  10. 获取屏幕的宽和高-Display中getHeight()和getWidth() 官方已废弃

    getHeight()和getWidth() deprecated in API level 13 Display dp=getWindowManager().getDefaultDisplay(); ...