数据规整化:pandas 求合并数据集(交集并集等)
数据集的合并或连接运算是通过一个或多个键将行链接起来的。这些运算是关系型数据库的核心。pandas的merge函数是对数据应用这些算法的这样切入点。
默认是交集, inner连接
列名不同可以分别指定:

其他方式还要‘left’、‘right’以及“outer”。外链接求取的是键的并集, 组合了左连接和右连接的效果。

how 的作用是合并时候以谁为标准,是否保留NaN值

多对多

多对多 连接产生的行的笛卡尔积。由于左边的DataFrame有3个‘b’行, 右边的有2个,所以最终结果中
就有6个‘b’行。

根据多个键进行合并, 传入一个由列明组成的列表即可:
left = DataFrame(
{"key1": ['foo', 'foo', 'bar'],
"key2": ['one', 'two', 'one'],
"lval": [, , ]
}
)
right = DataFrame(
{"key1": ['foo', 'foo', 'bar', 'bar'],
"key2": ['one', 'one', 'one', 'two'],
"rval": [, , , ]
}
)
print(left)
print(right)
pm = pd.merge(left, right, on=["key1", "key2"], how="outer")
print(pm)


on与left_on 和right_on的区别

这个是left_on 和right_on

去重或更改后缀

merge函数的参数

索引上的合并

merge方法求取连接键的并集

对于层次化索引的数据
这个时候必须以列表的形式指明用作合并键的多个列(注意对重复索引的处理)
lefth = DataFrame({'key1':[ 'Ohio', 'Ohio', 'Ohio','Nevada', 'Nevada',],
"key2":[, , ,, ],
"data":np.arange(.)
})
righth = DataFrame(np.arange().reshape((, )),
index=[['Nevada', 'Nevada', 'Ohio', 'Ohio', 'Ohio', 'Ohio'],
[, , , , , ]],
columns=['event1', 'event2']
)
print(lefth)
print(righth)
pm = pd.merge(lefth, righth,left_on=['key1', 'key2'], right_index=True)
print(pm)

索引并集

DataFrame.join实例方法
它能更为方便地实现索引合并。它还可用于和合并多个带有相同或相似索引的DataFrame对象, 而不管他们
之间有重叠的列。

print(left1.join(right1, how='inner')) left2.join([1, 2], how='outer') #多个
数据规整化:pandas 求合并数据集(交集并集等)的更多相关文章
- Python之数据规整化:清理、转换、合并、重塑
Python之数据规整化:清理.转换.合并.重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象 ...
- 《python for data analysis》第七章,数据规整化
<利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 imp ...
- 【学习】数据规整化:清理、转换、合并、重塑【pandas】
这一部分非常关键! 数据分析和建模方面的大量编程工作都是用在数据准备上的:加载.清理.转换以及重塑. 1.合并数据集 pandas对象中的数据可以通过 一些内置的方式进行合并: pandas.merg ...
- 利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(1)
数据分析和建模方面的大量编程工作都是用在数据准备上的:载入.清理.转换以及重塑.有时候,存放在文件或数据库中的数据并不能满足你的数据处理应用的要求.很多人都选择使用通用编程语言(如Python.Per ...
- 利用Python进行数据分析-Pandas(第五部分-数据规整:聚合、合并和重塑)
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是panda ...
- Python 数据分析(一) 本实验将学习 pandas 基础,数据加载、存储与文件格式,数据规整化,绘图和可视化的知识
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 ...
- 利用python进行数据分析之数据规整化
数据分析和建模大部分时间都用在数据准备上,数据的准备过程包括:加载,清理,转换与重塑. 合并数据集 pandas对象中的数据可以通过一些内置方法来进行合并: pandas.merge可根据一个或多个键 ...
- 利用Python进行数据分析 第8章 数据规整:聚合、合并和重塑.md
学习时间:2019/11/03 周日晚上23点半开始,计划1110学完 学习目标:Page218-249,共32页:目标6天学完(按每页20min.每天1小时/每天3页,需10天) 实际反馈:实际XX ...
- 第三章 python数据规整化
本章概要 1.去重 2.缺失值处理 3.清洗字符型数据的空格 4.字段抽取 去重 把数据结构中,行相同的数据只保留一行 函数语法: drop_duplicates() #导入pandas包中的read ...
随机推荐
- Web Component探索
概述 各种网站往往需要一些相同的模块,比如日历.调色板等等,这种模块就被称为“组件”(component).Web Component就是网页组件式开发的技术规范. 采用组件进行网站开发,有很多优点. ...
- 基于ASP.NET MVC的ABP框架入门学习教程
为什么使用ABP 我们近几年陆续开发了一些Web应用和桌面应用,需求或简单或复杂,实现或优雅或丑陋.一个基本的事实是:我们只是积累了一些经验或提高了对,NET的熟悉程度. 随着软件开发经验的不断增加, ...
- 并发编程 – Concurrent 用户指南--转
1. java.util.concurrent – Java 并发工具包 Java 5 添加了一个新的包到 Java 平台,java.util.concurrent 包.这个包包含有一系列能够让 Ja ...
- Fluent UDF【7】:解释型UDF
UDF宏有两种方式可以被Fluent所接受:编译和解释.其中有一些宏既可以被解释也可以被编译,而一些宏则只能被解释.有一些场合只接受编译后的UDF(如动网格中的一些宏),而有些场合既可以接受编译的UD ...
- 最全Java锁详解:独享锁/共享锁+公平锁/非公平锁+乐观锁/悲观锁
在Java并发场景中,会涉及到各种各样的锁如公平锁,乐观锁,悲观锁等等,这篇文章介绍各种锁的分类: 公平锁/非公平锁 可重入锁 独享锁/共享锁 乐观锁/悲观锁 分段锁 自旋锁 01.乐观锁 vs 悲观 ...
- DIOCP开源项目-利用队列+0MQ+多进程逻辑处理,搭建稳定,高效,分布式的服务端
最近头脑里面一直在想怎么样让能让大家基于DIOCP上写出稳定的服务端程序.很多朋友问我,你DIOCP稳定吗,我可以用他来做三层服务器吗? 当时我是这样回答的,我只能保证DIOCP底层通信的稳定. 说实 ...
- Windows下GUI编程——窗口
windows下创建一个基于GUI的窗口程序很简单,使用MFC或者Win32 API都可以实现.本文简单整理下windows API创建GUI应用程序的基本编码框架. 比较常见的窗口包括:桌面窗口.应 ...
- plsql连接远程oracle和like无法查询中文问题
https://blog.csdn.net/yangguangzhidi/article/details/53301979 ************************************** ...
- 如何在一张ppt中插入多张图片并能依次播放
我们在做ppt的过程中,有时遇到在一张ppt中插入多张图片还想让其能依次播放的情况,针对上述情况我们可以根据下列步骤进行设置.(新手必看) 1.首先,用鼠标点击桌面Microsoft PowerPo ...
- Windows下MFC程序利用LockCop解决死锁
死锁现象:在训练的时候,点击“终止”按钮时不时会发生死锁. 检测工具:LockCop.TRACE宏.::GetCurrentThreadID函数. 检测手段: 总结起来就是—— 第一步:用LockCo ...