主成分分析(PCA)算法,K-L变换 角度
主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数 量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换。PCA方法最著名的应用应该是在人脸识别中特征提取及数据维,我们知 道输入200*200大小的人脸图像,单单提取它的灰度值作为原始特征,则这个原始特征将达到40000维,这给后面分类器的处理将带来极大的难度。著名 的人脸识别Eigenface算法就是采用PCA算法,用一个低维子空间描述人脸图像,同时用保存了识别所需要的信息。下面先介绍下PCA算法的本质K- L变换。
1、K-L变换(卡洛南-洛伊(Karhunen-Loeve)变换):最优正交变换
- 一种常用的特征提取方法;
- 最小均方误差意义下的最优正交变换;
- 在消除模式特征之间的相关性、突出差异性方面有最优的效果。





取得最小值。




向量y就是变换(降维)后的系数向量,在人脸识别Eigenface算法中就是用系数向量y代替原始特征向量x进行识别。



。

,这些特征向量组成的矩阵U就是人脸空间的正交基底,用它们的线性组合可以重构出样本中任意的人脸图像,(如果有朋友不太理解这句话的意思,请看下面的总结2。)并且图像信息集中在特征值大的特征向量中,即使丢弃特征值小的向量也不会影响图像质量。
。由大于
的
对应的特征向量构成主成分,主成分构成的变换矩阵为:
构成的特征脸子空间中,U的维数为M×d。有了这样一个降维的子空间,任何一幅人脸图像都可以向其作投影
,即并获得一组坐标系数,即低维向量y,维数d×1,为称为KL分解系数。这组系数表明了图像在子空间的位置,从而可以作为人脸识别的依据。
的特征向量和特征值,这里怎么求的是协方差矩阵
?
,可以看出其实
用代替x就成了相关矩阵R,相当于原始样本向量都减去个平均向量,实质上还是一样的,协方差矩阵也是实对称矩阵。
,则
在特征脸空间U的投影,可以表示为系数向量y:
的维数为M×1,y的维数d×1。若M为200*200=40000维,取200个主成分,即200个特征向量,则最后投影的系数向量y维数降维200维。
主成分分析(PCA)算法,K-L变换 角度的更多相关文章
- 机器学习--主成分分析(PCA)算法的原理及优缺点
一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可 ...
- Python的主成分分析PCA算法
这篇文章很不错:https://blog.csdn.net/u013082989/article/details/53792010 为什么数据处理之前要进行归一化???(这个一直不明白) 这个也很不错 ...
- 主成分分析 PCA算法原理
对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合.这时就需要借助主成分分析 (principal component analysis)来概括诸多信 ...
- 一步步教你轻松学主成分分析PCA降维算法
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...
- K-L变换和 主成分分析PCA
一.K-L变换 说PCA的话,必须先介绍一下K-L变换了. K-L变换是Karhunen-Loeve变换的简称,是一种特殊的正交变换.它是建立在统计特性基础上的一种变换,有的文献也称其为霍特林(Hot ...
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 模式识别(1)——PCA算法
作者:桂. 时间:2017-02-26 19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处, ...
- 05-03 主成分分析(PCA)
目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主 ...
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
随机推荐
- django进阶-查询(适合GET4以上人群阅读)
前言: 下篇博客写关于bootstrap... 一.如何在脚本测试django from django.db import models class Blog(models.Model): name ...
- java框架---->commonmark的使用(一)
commonmark-java是一个Markdown 解析器,一个基于CommonMark规范解析和渲染Markdown文本的Java库.偶尔要回头看看,否则永远都在追寻,而不知道自己失去了什么. c ...
- C++中的异常安全性【转】
原文写的非常好,来自这里 一个函数如果说是“异常安全”的,必须同时满足以下两个条件:1.不泄漏任何资源:2.不允许破坏数据. 我们先通过两个反面的例子开始. 第一个是造成资源泄漏的例子.一个类Type ...
- css笔记 - 张鑫旭css课程笔记之 z-index 篇
一.z-index语法.支持的属性值等 z-index: 在支持z-index的元素上, z-index规定了元素(包括子元素)的垂直z方向的层级顺序, z-index可以决定哪个元素覆盖在哪个元素上 ...
- MAC升级node及npm
清除node.js的cache: sudo npm cache clean -f 安装 n 工具,这个工具是专门用来管理node.js版本的,别怀疑这个工具的名字,是他是他就是他,他的名字就是 &qu ...
- JUnit(>4.0)@BeforeClass、@Before、@Test、@After、@AfterClass、@Ignore
JUnit 4 开始使用 Java 5 中的注解(annotation),常用的几个 annotation 介绍: @BeforeClass:针对所有测试,只执行一次,且必须为static void ...
- mysql语句性能分析案例
写法不一样而功能完全相同的两条 SQL 的在性能方面的差异.示例一需求:取出某个 group(假设 id 为 100)下的用户编号(id),用户昵称(nick_name).用户性别( sexualit ...
- redmine创建新闻,自动发邮件给项目组所有成员
redmine创建新闻,自动发邮件给项目组所有成员: 1.添加用户至公共项目内 2.配置系统邮件推送配置 3.检查用户接受推送配置 3.使用管理员账户发布新闻(不能自己发送自己) 4.查看邮件接受邮件
- 【咸鱼教程】TextureMerger1.6.6 三:Bitmap Font的制作和使用
BitmapFont主要用于特殊字体在游戏中的使用 目录 一 方法1:添加字符 适合一张一张的零碎图片来制作位图字体 二 方法2:系统字体 适合使用已安装的系统字体来制作位图字 ...
- 【CF827F】Dirty Arkady's Kitchen DP
[CF827F]Dirty Arkady's Kitchen 题意:给你一张n个点,m条边的有向图,每条边长度为1,第i条边在[li,ri)的时间内可以进入,求1到n的最短路. $n,m\le 5\t ...